Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(39): 12502-12512, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134885

RESUMO

Lycopene, a natural bioactive component, has potential to reduce the risk of environmental factors inducing chronic diseases. It is important to explore lycopene's health benefits and its mechanism. The uncontrolled use of atrazine in agriculture causes critical environmental pollution issues worldwide. Exposure to atrazine through water and food chains is a risk to humans. In this study, mice were orally treated with lycopene and/or different concentrations of atrazine for 21 days to explore the influence of atrazine on the spleen and the role of lycopene's protection in atrazine exposure. The work found that atrazine exerted its toxic role in the B cell zone of the spleen by inducing Foxo1 deficiency. Atrazine caused ROS generation and Pink1/Parkin dysfunction via inducing Foxo1 deficiency, which led to apoptosis in the B cell zone. Additionally, the work revealed that lycopene ameliorates atrazine-induced apoptosis in the B cell zone of the spleen via regulating the miR-27a-3p/Foxo1 pathway. The finding also underscored a novel target of lycopene in maintaining homeostasis during B cell maturation.


Assuntos
Atrazina , MicroRNAs , Animais , Apoptose , Atrazina/toxicidade , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Licopeno/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases/metabolismo , Água
2.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913841

RESUMO

The purpose of the present study was to investigate the effects of drinking water alkaline mineral complex (AMC) supplementation on growth performance, intestinal morphology, inflammatory response, immunity, antioxidant defense system, and barrier functions in weaned piglets. In a 15-d trial, 240 weaned piglets (9.35 ± 0.86 kg) at 28 d of age (large white × landrace × Duroc) were randomly divided into two groups: the control (Con) group and the AMC group. Drinking water AMC supplementation improved (P < 0.01) final body weight (BW) and average daily gain (ADG) in weaned piglets compared to the Con group. Importantly, AMC reduced (P < 0.01) the feed-to-gain (F:G) ratio. AMC water improved the physical health conditions of piglets under weaning stress, as reflected by the decreased (P < 0.05) hair score and conjunctival score. Moreover, there was no significant (P > 0.05) difference in relatively small intestinal length, organ (liver, spleen, and kidney) indices, or gastrointestinal pH value in weaned piglets between the two groups. Of note, AMC significantly promoted the microvilli numbers in the small intestine and effectively ameliorated the gut morphology damage induced by weaning stress, as evidenced by the increased (P < 0.05) villous height (VH) and ratio of VH to crypt depth. Additionally, AMC lessened the levels of lipopolysaccharide (LPS, P < 0.01) and the contents of IL1ß (P<0.05), and TNF-α (P<0.05) in the weaned piglet small intestine. Conversely, the gut immune barrier marker, secretory immunoglobulin A (sIgA) levels in serum and small intestine mucosa were elevated after AMC water treatment (P < 0.01). Furthermore, AMC elevated the antioxidant mRNA levels of (P < 0.05) SOD 1-2, (P < 0.01) CAT, and (P < 0.01) GPX 1-2 in the small intestine. Likewise, the mRNA levels of the small intestine tight junction factors Occludin (P < 0.01), ZO-1 (P < 0.05), Claudin 2 (P < 0.01), and Claudin 5 (P<0.01) in the AMC treatment group were notably higher than those in the Con group. In conclusion, drinking water AMC supplementation has an accelerative effect on growth performance by elevating gut health by improving intestinal morphology, the inflammatory response, the antioxidant defense system, and barrier function in weaned piglets.


The piglet suffers vital physiological, environmental, and social challenges when it is weaned from the sow that can predispose the piglet to subsequent diseases and other production losses, and these challenges are responsible for serious economic losses to the swine industry. Weaning stress induces intestinal injury, decreased immunity, and digestive system dysfunction, which then reduces feed intake and inhibits the growth performance of piglets. It is well known that alternatives to antibiotics for preventing weaning stress in weaned farm animals are sorely needed. The biologically beneficial effects of alkaline mineral water are widely reported. Alkaline mineral complex (AMC), as an immunomodulator, is considered to have antistress effects in the swine industry. In addition, treatment through drinking water is considered to be an efficient and low-cost feasible disease control strategy. Drinking water AMC supplementation is expected to exert health benefits in pigs; however, the responses of weaned piglets to water supplemented with AMC have not been fully explored. Thus, this study explored the effects of drinking water AMC supplementation on growth performance and gut health in weaned piglets. Our results showed that AMC water supplementation conspicuously enhanced the growth performance by improving the gut health.


Assuntos
Antioxidantes , Água Potável , Animais , Suínos , Desmame , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Ocludina , Suplementos Nutricionais , Claudina-2 , Claudina-5/farmacologia , Fator de Necrose Tumoral alfa , Mucosa Intestinal , Minerais/farmacologia , RNA Mensageiro , Imunoglobulina A Secretora/farmacologia , Superóxido Dismutase
3.
ACS Pharmacol Transl Sci ; 4(1): 386-395, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33615188

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical and widely used as a plasticizer. Humans can be exposed to DEHP through direct contact or environmental contamination. Lycopene (Lyc) has been discussed as a potential effector in the prevention and therapy of various diseases. 140 male mice were assigned into control, vehicle control, Lyc (5 mg/kg BW/d), DEHP (500 and 1000 mg/kg BW/d, respectively), and DEHP + Lyc groups and treated with an oral gavage that lasted 28 d. The ultrastructural results showed that DEHP induced pathological changes and mitochondrial injuries. We further revealed that DEHP exposure destroyed the Fe2+ imbalance homeostasis and, consequently, increases of lipid peroxidation and inhibition of cysteine/glutamate antiporter, all of which were involved in the process of ferroptsis. Moreover, the supplementation of Lyc significantly inhibited the ferroptsis changes mentioned above. Altogether, these results indicated that DEHP exposure triggered splenic cell death via ferroptosis; meanwhile, they also shed new evidence on a potential clue for the intervention and prevention of DEHP-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA