Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37622854

RESUMO

In vitro compartmentalization (IVC) is a technique for generating water-in-oil microdroplets to establish the genotype (DNA information)-phenotype (biomolecule function) linkage required by many biological applications. Recently, fluorinated oils have become more widely used for making microdroplets due to their better biocompatibility. However, it is difficult to perform multi-step reactions requiring the addition of reagents in water-in-fluorinated-oil microdroplets. On-chip droplet manipulation is usually used for such purposes, but it may encounter some technical issues such as low throughput or time delay of reagent delivery into different microdroplets. Hence, to overcome the above issues, we demonstrated a nanodroplet-based approach for the delivery of copper ions and middle-sized peptide molecules (human p53 peptide, 2 kDa). We confirmed the ion delivery by microscopic inspection of crystal formation inside the microdroplet, and confirmed the peptide delivery using a fluorescent immunosensor. We believe that this nanodroplet-based delivery method is a promising approach to achieving precise control for a broad range of fluorocarbon IVC-based biological applications, including molecular evolution, cell factory engineering, digital nucleic acid detection, or drug screening.


Assuntos
Técnicas Biossensoriais , Humanos , Indicadores e Reagentes , Imunoensaio , Cobre , Água
2.
Trends Cell Biol ; 33(4): 277-279, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36759281

RESUMO

In order to further visualize intracellular dynamics, precise imaging of endogenous proteins in live cells was performed using an antigen-binding fragment (Fab)-based Quenchbody (Q-body). The transfected Q-body probe showed an antigen-dependent fluorescence response, enabling the clear visualization and sorting of cells expressing p53, a tumor suppressor biomarker.


Assuntos
Corantes Fluorescentes , Proteínas , Humanos , Corantes Fluorescentes/metabolismo , Fluorescência , Biomarcadores Tumorais
3.
Chem Sci ; 13(33): 9739-9748, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091915

RESUMO

Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA