Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Life Sci Space Res (Amst) ; 40: 81-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245352

RESUMO

Ionizing radiation poses significant risks to astronauts during deep space exploration. This study investigates the impact of radiation on nucleophosmin (NPM), a protein involved in DNA repair, cell cycle regulation, and proliferation. Using X-rays, a common space radiation, we found that radiation suppresses NPM expression. Knockdown of NPM increases DNA damage after irradiation, disrupts cell cycle distribution and enhances cellular radiosensitivity. Additionally, NPM interacts with globular actin (G-actin), affecting its translocation and centrosome binding during mitosis. These findings provide insights into the role of NPM in cellular processes in responding to radiation. This article enhances our comprehension of radiation-induced genomic instability and provides a foundational platform for prospective investigations within the realm of space radiation and its implications for cancer therapy.


Assuntos
Actinas , Nucleofosmina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raios X , Estudos Prospectivos
3.
Adv Sci (Weinh) ; 10(13): e2300314, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871154

RESUMO

Long noncoding RNAs (lncRNAs) in eukaryotic transcripts have long been believed to regulate various aspects of cellular processes, including carcinogenesis. Herein, it is found that lncRNA AFAP1-AS1 encodes a conserved 90-amino acid peptide located on mitochondria, named lncRNA AFAP1-AS1 translated mitochondrial-localized peptide (ATMLP), and it is not the lncRNA but the peptide that promotes the malignancy of nonsmall cell lung cancer (NSCLC). As the tumor progresses, the serum level of ATMLP increases. NSCLC patients with high levels of ATMLP display poorer prognosis. Translation of ATMLP is controlled by m6 A methylation at the 1313 adenine locus of AFAP1-AS1. Mechanistically, ATMLP binds to the 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) and inhibits its transport from the inner to the outer mitochondrial membrane, which antagonizes the NIPSNAP1-mediated regulation of cell autolysosome formation. The findings uncover a complex regulatory mechanism of NSCLC malignancy orchestrated by a peptide encoded by a lncRNA. A comprehensive judgment of the application prospects of ATMLP as an early diagnostic biomarker for NSCLC is also made.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Metilação , Mitocôndrias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Radiat Res ; 198(3): 297-305, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35439322

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with high recurrence and metastasis rates, and more than half of the patients diagnosed with NSCLC receive local radiotherapy. However, the intrinsic radio-resistance of cancer cells is a major barrier to effective radiotherapy for NSCLC. CRYBG3 is a long noncoding RNA (lncRNA) that was originally identified to be upregulated in NSCLC and enhanced metastasis of NSCLC cells by interacting with eEF1A1 to promote murine double minute 2 (MDM2) expression. The aims of this study were to reveal the contribution of CRYBG3 to the radioresistance of NSCLC and determine whether that is associated with MDM2-p53 pathway. Therefore, CRYBG3 was stably downregulated in A549 (wild-type p53) and H1299 (deficient p53) cells by infecting short hairpin RNA (shRNA) lentiviral particles. The results showed that downregulation of CRYBG3 increased DNA damage, enhanced apoptosis and pro-apoptotic protein expression in A549 or p53-overexpressed H1299 cells but not in H1299 or p53-silenced A549 cells after X-ray irradiation. However, the contribution of CRYBG3 to radioresistance was abolished by eEF1A1 or MDM2 knockdown in A549 cells. Thus, we concluded that downregulation of CRYBG3 enhanced radiosensitivity by reducing MDM2 expression then leading to decreased MDM2-mediated degradation of p53 in wild-type p53 expressing NSCLC cells. These findings suggested that CRYBG3 can be a potential target for therapeutic intervention of certain lung cancer subtypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809929

RESUMO

The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells' metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.


Assuntos
Proteínas de Transporte/metabolismo , Cristalinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Ligação Proteica , RNA Longo não Codificante/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncogene ; 40(10): 1821-1835, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33564066

RESUMO

Aneuploidy is a hallmark of genomic instability that leads to tumor initiation, progression, and metastasis. CDC20, Bub1, and Bub3 form the mitosis checkpoint complex (MCC) that binds the anaphase-promoting complex or cyclosome (APC/C), a crucial factor of the spindle assembly checkpoint (SAC), to ensure the bi-directional attachment and proper segregation of all sister chromosomes. However, just how MCC is regulated to ensure normal mitosis during cellular division remains unclear. In the present study, we demonstrated that LNC CRYBG3, an ionizing radiation-inducible long noncoding RNA, directly binds with Bub3 and interrupts its interaction with CDC20 to result in aneuploidy. The 261-317 (S3) residual of the LNC CRYBG3 sequence is critical for its interaction with Bub3 protein. Overexpression of LNC CRYBG3 leads to aneuploidy and promotes tumorigenesis and metastasis of lung cancer cells, implying that LNC CRYBG3 is a novel oncogene. These findings provide a novel mechanistic basis for the pathogenesis of NSCLC after exposure to ionizing radiation as well as a potential target for the diagnosis, treatment, and prognosis of an often fatal disease.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Longo não Codificante/genética , gama-Cristalinas/genética , Aneuploidia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Proteínas Cdc20/genética , Linhagem Celular Tumoral , Cromossomos/genética , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/genética
7.
Dose Response ; 18(2): 1559325820926744, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489339

RESUMO

Recent studies have demonstrated that radiation activates in situ antitumor immunity and consequently induced a synergistic effect of radiotherapy and immunotherapy. However, studies related to radiation-induced changes in immune system of tumor-bearing mice are limited, which are of great significance to improve the efficacy of radioimmunotherapy. In this study, we first established a primary lung tumor mouse model using urethane. Then part of the right lung of the mouse was exposed to X-ray irradiation with a computed tomography-guided small animal irradiator and the changes of immune cells in both peripheral blood and spleen were determined by flow cytometry. Besides, the levels of both cytokines and immunoglobulins in mouse serum were detected by a protein chip. We found that B lymphocytes increased while CD8+ T lymphocytes reduced significantly. Interleukin-3 (IL-3), IL-6, regulated upon activation, normally T-expressed, and presumably secreted factor (RANTES), and vascular endothelial growth factor (VEGF) were found to be decreased after tumor formation, and the similar results have also been observed with kappa, IgG3, IgE, IgM, and IgG2a. After irradiation, lower concentrations of IgD, kappa, and IgM were found in the serum. Our findings indicate that localized tumor irradiation caused some obvious changes like inhibiting the ability of innate immunity, and these changes may be useful in predicting prognosis.

8.
J Cancer ; 10(12): 2764-2770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258784

RESUMO

Long noncoding RNAs (lncRNAs) are usually associated with tumor development and progression and some of them are dysregulated in various human cancers. The mechanisms underlying their dysregulation are worth further study. Here, we demonstrate that the expression level of LNC CRYBG3 is correlated with 1501 aberrantly expressed proteins in A549 cells (non-small cell lung cancer (NSCLC) cells). LNC CRYBG3 overexpression results in M phase arrest and promoted cell death, whereas LNC CRYBG3 knockdown did not elicit the opposite effects. The overexpression of LNC CRYBG3 inhibits cell proliferation both in vitro and in vivo. Moreover, it upregulates the expression of cyclin B1 and the phosphorylation of H3, whereas it inhibited the expression of cyclin-dependent kinase 6 and cyclin D1. Taken together, these findings suggest that LNC CRYBG3 regulates the cell cycle process of A549 cells, suggesting its potential application for the treatment of this disease.

9.
Technol Cancer Res Treat ; 18: 1533033819842546, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30961474

RESUMO

OBJECTIVES: Bortezomib has been widely used to treat multiple myeloma and other hematological malignancies. However, not much is known about its effect on solid tumors. The aim of this study was to study the effect of Bortezomib on human esophageal cancer cell lines and investigate the potential target pathways. METHODS: Two human esophageal cancer cell lines, TE-1 and KYSE-150, were used in this study. Cell viability, cell cycle distribution, and apoptosis after Bortezomib treatment was detected by Cell Counting Kit-8, flow cytometry, and Annexin V/propidium iodide staining, respectively. The genes targeted by Bortezomib were analyzed at the messenger RNA level by microarray chips and quantitative real-time polymerase chain reaction. RESULTS: The proliferation of human esophageal cancer cell lines was inhibited by Bortezomib in a dose- and time-dependent manner. Bortezomib treatment led to G2/M arrest and apoptosis. Microarray chips revealed multiple signaling pathways targeted by Bortezomib, including proteasome, endoplasmic reticulum, Wnt-, and calcium-mediated pathway. The expression patterns of 4 representative genes UBD, CUL3, HDAC6, and GADD45A were verified by quantitative real-time polymerase chain reaction and showed consistency with the microarray assay. CONCLUSION: Bortezomib could suppress cell viability, cause G2/M arrest, and induce apoptosis in human esophageal cancer cells, with possible targets including UBD, CUL3, HDAC6, and GADD45A.


Assuntos
Bortezomib/farmacologia , Carcinoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Carcinoma/genética , Carcinoma/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas Culina/genética , Células Epiteliais/efeitos dos fármacos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/genética , Humanos , Análise em Microsséries , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , Ubiquitinas/genética , Via de Sinalização Wnt/efeitos dos fármacos
10.
Cell Cycle ; 17(9): 1115-1123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29895215

RESUMO

Radiation-induced lung injury (RILI) occurs most often in radiotherapy of lung cancer, esophageal cancer, and other thoracic cancers. The occurrence of RILI is a complex process that includes a variety of cellular and molecular interactions, which ultimately result in carcinogenesis. However, the underlying mechanism is unknown. Here we show that Ras-related C3 botulinum toxin substrate 2 (RAC2) and transcription factor jun-B (JUNB) were upregulated in non-small cell carcinoma (NSCLC) tissues and were associated with poor prognoses for NSCLC patients. Ionizing radiation also caused increased expression of RAC2 in quiescent stage cells, and the reentry of quiescent cells into a new cell cycle. The activity of the serum response factor (SRF) was activated by RAC2 and other Rho family genes (RhoA, ROCK, and LIM kinase). Consequently, JUNB acted as an oncogene and induced abnormal proliferation of quiescent cells. Together, the results showed that RAC2 can be used as a target gene for radiation protection. A better understanding of the RAC2 and JUNB mechanisms in the molecular etiology of lung cancer will be helpful in reducing cancer risks and side effects during treatment of this disorder. Our study therefore provides a new perspective on the involvement of RAC2 and JUNB as oncogenes in the tumorigenesis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos da radiação , Neoplasias Pulmonares/patologia , Fase de Repouso do Ciclo Celular/efeitos da radiação , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Humanos , Estimativa de Kaplan-Meier , Camundongos , Prognóstico , Transdução de Sinais/efeitos da radiação , Raios X , Proteína RAC2 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA