RESUMO
TAM receptor tyrosine kinases have emerged as promising therapeutic targets for cancer treatment due to their roles in both tumor intrinsic survival mechanisms and suppression of antitumor immunity within the tumor microenvironment. Inhibiting MerTK and Axl selectively is believed to hinder cancer cell survival, reverse the protumor myeloid phenotype, and suppress efferocytosis, thereby eliciting an antitumor immune response. In this study, we present the discovery of A-910, a highly potent and selective dual MerTK/Axl inhibitor, achieved through a structure-based medicinal chemistry campaign. The lead compound exhibits favorable oral bioavailability, exceptional kinome selectivity, and significantly improved in vivo target engagement. These findings support the use of A-910 as an orally bioavailable in vivo tool compound for investigating the immunotherapy potential of dual MerTK/Axl inhibition.
Assuntos
Receptor Tirosina Quinase Axl , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , c-Mer Tirosina Quinase , c-Mer Tirosina Quinase/antagonistas & inibidores , c-Mer Tirosina Quinase/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/administração & dosagem , Humanos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Administração Oral , Relação Estrutura-Atividade , Disponibilidade Biológica , Camundongos , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , RatosRESUMO
Laser-Induced Breakdown Spectroscopy (LIBS) instruments are increasingly recognized as valuable tools for detecting trace metal elements due to their simplicity, rapid detection, and ability to perform simultaneous multi-element analysis. Traditional LIBS modeling often relies on empirical or machine learning-based feature band selection to establish quantitative models. In this study, we introduce a novel approach-simultaneous multi-element quantitative analysis based on the entire spectrum, which enhances model establishment efficiency and leverages the advantages of LIBS. By logarithmically processing the spectra and quantifying the cognitive uncertainty of the model, we achieved remarkable predictive performance (R2) for trace elements Mn, Mo, Cr, and Cu (0.9876, 0.9879, 0.9891, and 0.9841, respectively) in stainless steel. Our multi-element model shares features and parameters during the learning process, effectively mitigating the impact of matrix effects and self-absorption. Additionally, we introduce a cognitive error term to quantify the cognitive uncertainty of the model. The results suggest that our approach has significant potential in the quantitative analysis of trace elements, providing a reliable data processing method for efficient and accurate multi-task analysis in LIBS. This methodology holds promising applications in the field of LIBS quantitative analysis.
RESUMO
Material characterization using laser-induced breakdown spectroscopy (LIBS) often relies on extensive data for effective analysis. However, data acquisition can be challenging, and the high dimensionality of raw spectral data combined with a large-scale sample dataset can strain computational resources. In this study, we propose a small sample size stacking model based on femtosecond LIBS to achieve accurate qualitative analysis of aluminum alloys. The proposed three-layer stacking algorithm performs data reconstruction and feature extraction to enhance the analysis. In the first layer, random forest spectral feature selection and specific spectral line spreading are employed to reconstruct the data. The second layer utilizes three heterogeneous classifiers to extract features from the reconstructed spectra in different feature spaces, generating second-level reconstructed data. Finally, the third layer utilizes the reconstructed dataset for qualitative prediction. Results indicate that the Stacking algorithm outperforms traditional methods such as k-nearest neighbors (KNN), support vector machine (SVM), and random forest (RF), including those combined with principal component analysis (PCA). The Stacking algorithm achieves an impressive 100% recognition rate in classification, with Accuracy, precision, recall, and F1 scores reaching 1.0. Moreover, as the number of samples decreases, the gap between the recognition accuracy of the Stacking algorithm and traditional approaches widens. For instance, using only 15 spectra for training, the Stacking algorithm achieves a recognition accuracy of 96.47%, significantly surpassing the improved RF's accuracy of 71.76%. Notably, the model demonstrates strong robustness compared to traditional modeling approaches, and the qualitative prediction error remains consistently below 5%. These findings underscore the model's enhanced generalization ability and higher prediction accuracy in small sample machine learning. This research contributes significantly to improving the applicability of the LIBS technique for fast detection and analysis of small samples. It provides valuable insights into the development of effective methodologies for material characterization, paving the way for advancements in the field.
RESUMO
Novel conformationally constrained BET bromodomain inhibitors have been developed. These inhibitors were optimized in two similar, yet distinct chemical series, the 6-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (A) and the 1-methyl-1H-pyrrolo[2,3-c]pyridin-7(6H)-ones (B). Each series demonstrated excellent activity in binding and cellular assays, and lead compounds from each series demonstrated significant efficacy in in vivo tumor xenograft models.
Assuntos
Proteínas Nucleares/antagonistas & inibidores , Piridonas/química , Fatores de Transcrição/antagonistas & inibidores , Animais , Sítios de Ligação , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Camundongos , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Mieloma Múltiplo/tratamento farmacológico , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Piridonas/farmacocinética , Piridonas/farmacologia , Piridonas/uso terapêutico , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Transplante HeterólogoRESUMO
Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.
Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação/efeitos dos fármacos , Modelos Moleculares , Estrutura MolecularRESUMO
IMPORTANCE OF THE FIELD: Platelet-derived growth factor receptor (PDGFR) is a compelling target for developing therapeutic agents to treat diseases associated with overactivated platelet-derived growth factor (PDGF) signaling and has proved to be particularly encouraging for cancer treatment. The efforts in this area have been greatly enhanced by the approval of tyrosine kinase inhibitors with PDGFR inhibitory activity such as imatinib, sunitinib and sorafenib. AREAS COVERED IN THIS REVIEW: This review surveys the small molecule PDGFR inhibitors reported in patent literature over the past 5 years (2005 - 2009). WHAT THE READER WILL GAIN: The reader will gain an overview of the chemical scaffolds and the activity/selectivity of the newly discovered PDGFR inhibitors. TAKE HOME MESSAGE: Targeting PDGFR kinase with small molecule inhibitors has remained a very active area. Many new and novel PDGFR inhibitors with different selectivity profiles are being discovered and evaluated. In cancer therapy, the identification of novel and potent PDGFR inhibitors with preferred kinase inhibitory profiles that deliver superior antitumor efficacy, yet have manageable side effects and toxicities, will continue to be the key for success. Additionally, interest in targeting PDGF signaling for intervention of various vascular diseases and fibrotic conditions is expected to continue to grow.
Assuntos
Sistemas de Liberação de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Patentes como Assunto , Inibidores de Proteínas Quinases/efeitos adversos , Transdução de Sinais/efeitos dos fármacosRESUMO
Tumor angiogenesis is mediated by KDR and other VEGFR and PDGFR kinases. Their inhibition presents an attractive approach for developing anticancer therapeutics. Here, we report a series of aminopyrazolopyridine ureas as potent VEGFR/PDGFR multitargeted kinase inhibitors. A number of compounds have been identified to be orally bioavailable and efficacious in the mouse edema model.
Assuntos
Aminopiridinas/química , Aminopiridinas/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ureia/análogos & derivados , Administração Oral , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Animais , Disponibilidade Biológica , Edema/tratamento farmacológico , Edema/metabolismo , Feminino , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/farmacologia , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/farmacologia , Doenças Uterinas/tratamento farmacológico , Doenças Uterinas/metabolismoRESUMO
In our continued efforts to search for potent and novel receptor tyrosine kinase (RTK) inhibitors as potential anticancer agents, we discovered, through a structure-based design, that 3-aminoindazole could serve as an efficient hinge-binding template for kinase inhibitors. By incorporating an N,N'-diaryl urea moiety at the C4-position of 3-aminodazole, a series of RTK inhibitors were generated, which potently inhibited the tyrosine kinase activity of the vascular endothelial growth factor receptor and the platelet-derived growth factor receptor families. A number of compounds with potent oral activity were identified by utilizing an estradiol-induced mouse uterine edema model and an HT1080 human fibrosarcoma xenograft tumor model. In particular, compound 17p (ABT-869) was found to possess favorable pharmacokinetic profiles across different species and display significant tumor growth inhibition in multiple preclinical animal models.
Assuntos
Inibidores da Angiogênese/síntese química , Indazóis/síntese química , Compostos de Fenilureia/síntese química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Trifosfato de Adenosina/química , Administração Oral , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação , Edema/induzido quimicamente , Edema/patologia , Estradiol , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indazóis/química , Indazóis/farmacologia , Masculino , Camundongos , Modelos Moleculares , Células NIH 3T3 , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Fosforilação , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Útero/efeitos dos fármacos , Útero/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In 15% to 30% of patients with acute myeloid leukemia (AML), aberrant proliferation is a consequence of a juxtamembrane mutation in the FLT3 gene (FMS-like tyrosine kinase 3-internal tandem duplication [FLT3-ITD]), causing constitutive kinase activity. ABT-869 (a multitargeted receptor tyrosine kinase inhibitor) inhibited the phosphorylation of FLT3, STAT5, and ERK, as well as Pim-1 expression in MV-4-11 and MOLM-13 cells (IC(50) approximately 1-10 nM) harboring the FLT3-ITD. ABT-869 inhibited the proliferation of these cells (IC(50) = 4 and 6 nM, respectively) through the induction of apoptosis (increased sub-G(0)/G(1) phase, caspase activation, and PARP cleavage), whereas cells harboring wild-type (wt)-FLT3 were less sensitive. In normal human blood spiked with AML cells, ABT-869 inhibited phosphorylation of FLT3 (IC(50) approximately 100 nM), STAT5, and ERK, and decreased Pim-1 expression. In methylcellulose-based colony-forming assays, ABT-869 had no significant effect up to 1000 nM on normal hematopoietic progenitor cells, whereas in AML patient samples harboring both FLT3-ITD and wt-FLT3, ABT-869 inhibited colony formation (IC(50) = 100 and 1000 nM, respectively). ABT-869 dose-dependently inhibited MV-4-11 and MOLM-13 flank tumor growth, prevented tumor formation, regressed established MV-4-11 xenografts, and increased survival by 20 weeks in an MV-4-11 engraftment model. In tumors, ABT-869 inhibited FLT3 phosphorylation, induced apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]) and decreased proliferation (Ki67). ABT-869 is under clinical development for AML.
Assuntos
Indazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fase G1/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células K562 , Antígeno Ki-67/biossíntese , Leucemia Mieloide Aguda/enzimologia , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-pim-1 , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo , Ensaio Tumoral de Célula-Tronco , Células U937RESUMO
ABT-869 is a structurally novel, receptor tyrosine kinase (RTK) inhibitor that is a potent inhibitor of members of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor families (e.g., KDR IC50 = 4 nmol/L) but has much less activity (IC50s > 1 micromol/L) against unrelated RTKs, soluble tyrosine kinases, or serine/threonine kinases. The inhibition profile of ABT-869 is evident in cellular assays of RTK phosphorylation (IC50 = 2, 4, and 7 nmol/L for PDGFR-beta, KDR, and CSF-1R, respectively) and VEGF-stimulated proliferation (IC50 = 0.2 nmol/L for human endothelial cells). ABT-869 is not a general antiproliferative agent because, in most cancer cells, >1,000-fold higher concentrations of ABT-869 are required for inhibition of proliferation. However, ABT-869 exhibits potent antiproliferative and apoptotic effects on cancer cells whose proliferation is dependent on mutant kinases, such as FLT3. In vivo ABT-869 is effective orally in the mechanism-based murine models of VEGF-induced uterine edema (ED50 = 0.5 mg/kg) and corneal angiogenesis (>50% inhibition, 15 mg/kg). In tumor growth studies, ABT-869 exhibits efficacy in human fibrosarcoma and breast, colon, and small cell lung carcinoma xenograft models (ED50 = 1.5-5 mg/kg, twice daily) and is also effective (>50% inhibition) in orthotopic breast and glioma models. Reduction in tumor size and tumor regression was observed in epidermoid carcinoma and leukemia xenograft models, respectively. In combination, ABT-869 produced at least additive effects when given with cytotoxic therapies. Based on pharmacokinetic analysis from tumor growth studies, efficacy correlated more strongly with time over a threshold value (cellular KDR IC50 corrected for plasma protein binding = 0.08 microg/mL, >or=7 hours) than with plasma area under the curve or Cmax. These results support clinical assessment of ABT-869 as a therapeutic agent for cancer.
Assuntos
Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Compostos de Fenilureia/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Células 3T3 , Animais , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Córnea , Edema , Feminino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/fisiologia , Útero/efeitos dos fármacos , Útero/fisiopatologiaRESUMO
The properties of several multitargeted receptor tyrosine kinase inhibitors have been studied for their inhibition of colony-stimulating factor-1 receptor (CSF-1R) signaling. A structurally novel, multitargeted tyrosine kinase inhibitor (ABT-869), imatinib (STI571), and four compounds currently in clinical development (AG013736, BAY 43-9006, CHIR258, and SU11248) were tested for inhibition of CSF-1R signaling in both the enzymatic and cellular assays. ABT-869 showed potent CSF-1R inhibition in both the enzyme and cell-based assays (IC50s < 20 nmol/L). In contrast to a previous report, we have found that imatinib has activity against human CSF-1R in both assays at submicromolar concentrations. In enzyme assays, we have found that the inhibition of CSF-1R by both ABT-869 and imatinib are competitive with ATP, with Ki values of 3 and 120 nmol/L, respectively. SU11248 is a potent inhibitor of CSF-1R in the enzyme assay (IC50 = 7 nmol/L) and inhibits receptor phosphorylation in the cellular assay (IC50 = 61 nmol/L). AG013736 was also a potent inhibitor of CSF-1R in both assays (enzyme, IC50 = 16 nmol/L; cellular, IC50 = 21 nmol/L), whereas BAY 43-9006 is less potent in the enzyme assay (IC50 = 107 nmol/L) than in the cellular system (IC50 = 20 nmol/L). In contrast, we found that CHIR258 had less activity in the cellular assay (IC50 = 535 nmol/L) relative to its enzymatic potency (IC50 = 26 nmol/L). These results show the use of a cell-based assay to confirm the inhibitory activity of lead compounds and drug candidates, such as ABT-869, against the CSF-1R protein in situ.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Compostos de Fenilureia/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Células 3T3 , Trifosfato de Adenosina/metabolismo , Animais , Benzamidas , Sítios de Ligação , Humanos , Mesilato de Imatinib , Cinética , Chumbo/farmacologia , Camundongos , Fosforilação , Piperazinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , TransfecçãoRESUMO
A series of novel thienopyrimidine-based receptor tyrosine kinase inhibitors has been discovered. Investigation of structure-activity relationships at the 5- and 6-positions of the thienopyrimidine nucleus led to a series of N,N'-diaryl ureas that potently inhibit all of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor tyrosine kinases. A kinase insert domain-containing receptor (KDR) homology model suggests that these compounds bind to the "inactive conformation" of the enzyme with the urea portion extending into the back hydrophobic pocket adjacent to the adenosine 5'-triphosphate (ATP) binding site. A number of compounds have been identified as displaying excellent in vivo potency. In particular, compounds 28 and 76 possess favorable pharmacokinetic (PK) profiles and demonstrate potent antitumor efficacy against the HT1080 human fibrosarcoma xenograft tumor growth model (tumor growth inhibition (TGI) = 75% at 25 mg/kg.day, per os (po)).
Assuntos
Antineoplásicos/síntese química , Pirimidinas/síntese química , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Trifosfato de Adenosina/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Edema/induzido quimicamente , Edema/patologia , Estradiol , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Modelos Moleculares , Células NIH 3T3 , Fosforilação , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Ureia/química , Ureia/farmacologia , Útero/efeitos dos fármacos , Útero/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A series of structurally novel HDAC inhibitors, in which a hetero aromatic ring connects the spacer with the hydrophobic group, has been designed and synthesized. These new inhibitors are very potent in in vitro enzymatic assays and display antiproliferation activity against two human cancer cell lines.
Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Químicos , Físico-Química , Cristalografia por Raios X , Humanos , Ácidos Hidroxâmicos/antagonistas & inibidores , Ácidos Hidroxâmicos/farmacologia , Indicadores e Reagentes , Relação Estrutura-AtividadeRESUMO
A series of hydroxamic acid-based HDAC inhibitors with an indole amide residue at the terminus have been synthesized and evaluated. Compounds with a 2-indole amide moiety have been found as the most active inhibitors among the different regioisomers. Introduction of substituents on the indole ring further improved the potency and generated a series of very potent inhibitors with significant antiproliferative activity. A representative compound in the series, 7b, has been found to be orally active in tumor growth inhibition model.
Assuntos
Amidas/química , Amidas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Indóis/química , Indóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Ácidos Hidroxâmicos/química , Concentração Inibidora 50 , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
A novel series of sulfone N-formylhydroxylamines (retrohydroxamates) have been investigated as matrix metalloproteinases (MMP) inhibitors. The substitution of the ether linkage of ABT-770 (5) with a sulfone group 13a led to a substantial increase in activity against MMP-9 but was accompanied by a loss of selectivity for inhibition of MMP-2 and -9 over MMP-1 and diminished oral exposure. Replacement of the biphenyl P1' substituent with a phenoxyphenyl group provided compounds that are highly selective for inhibition of MMP-2 and -9 over MMP-1. Optimization of the substituent adjacent to the retrohydroxamate center in this series led to the clinical candidate ABT-518 (6), a highly potent, selective, orally bioavailable MMP inhibitor that has been shown to significantly inhibit tumor growth in animal cancer models.