Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949947

RESUMO

In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.


Assuntos
Proteínas de Ciclo Celular/genética , Gastrulação/genética , Expressão Gênica , Proteínas Ribossômicas/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenótipo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Regulação para Cima
2.
Exp Anim ; 70(1): 22-30, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32779618

RESUMO

Two members of the CDK5 and ABL enzyme substrate (CABLES) family, CABLES1 and CABLES2, share a highly homologous C-terminus. They interact and associate with cyclin-dependent kinase 3 (CDK3), CDK5, and c-ABL. CABLES1 mediates tumor suppression, regulates cell proliferation, and prevents protein degradation. Although Cables2 is ubiquitously expressed in adult mouse tissues at RNA level, the role of CABLES2 in vivo remains unknown. Here, we generated bicistronic Cables2 knock-in reporter mice that expressed CABLES2 tagged with 3×FLAG and 2A-mediated fluorescent reporter tdTomato. Cables2-3×FLAG-2A-tdTomato (Cables2Tom) mice confirmed the expression of Cables2 in various mouse tissues. Interestingly, high intensity of tdTomato fluorescence was observed in the brain, testis and ovary, especially in the corpus luteum. Furthermore, immunoprecipitation analysis using the brain and testis in Cables2Tom/Tom revealed interaction of CABLES2 with CDK5. Collectively, our new Cables2 knock-in reporter model will enable the comprehensive analysis of in vivo CABLES2 function.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Técnicas de Introdução de Genes/métodos , Genes Reporter/genética , Modelos Animais , Modelos Genéticos , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Corpo Lúteo/metabolismo , Quinase 5 Dependente de Ciclina/fisiologia , Feminino , Expressão Gênica , Proteínas Luminescentes , Masculino , Camundongos Endogâmicos C57BL , Testículo/metabolismo , Proteína Vermelha Fluorescente
3.
Exp Anim ; 65(3): 319-27, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27053096

RESUMO

In the present study, we generated novel cre driver mice for gene manipulation in pancreatic ß cells. Using the CRISPR/Cas9 system, stop codon sequences of Ins1 were targeted for insertion of cre, including 2A sequences. A founder of C57BL/6J-Ins1(em1 (cre) Utr) strain was produced from an oocyte injected with pX330 containing the sequences encoding gRNA and Cas9 and a DNA donor plasmid carrying 2A-cre. (R26GRR x C57BL/6J-Ins1(em1 (cre) Utr)) F1 mice were histologically characterized for cre-loxP recombination in the embryonic and adult stages; cre-loxP recombination was observed in all pancreatic islets examined in which almost all insulin-positive cells showed tdsRed fluorescence, suggesting ß cell-specific recombination. Furthermore, there were no significant differences in results of glucose tolerance test among genotypes (homo/hetero/wild). Taken together, these observations indicated that C57BL/6J-Ins1(em1 (cre) Utr) is useful for studies of glucose metabolism and the strategy of bicistronic cre knock-in using the CRISPR/Cas9 system could be useful for production of cre driver mice.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Células Secretoras de Insulina , Insulina/genética , Integrases/genética , Camundongos Mutantes , Animais , Códon de Terminação/genética , Proteína Substrato Associada a Crk/administração & dosagem , Glucose/metabolismo , Injeções , Integrases/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Mutantes/genética , Mutagênese Insercional , Oócitos , RNA/administração & dosagem , Recombinação Genética
4.
Sci Rep ; 5: 13632, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346620

RESUMO

We found a novel spontaneous mouse mutant with depigmentation in the ventral body, which we called White Spotting (WS) mouse. Genetic investigation revealed deletion of a > 1.2-Mb genomic region containing nine genes (Kit, Kdr, Srd5a3, Tmeme165, Clock, Pdcl2, Nmu, Exoc1, and Cep135). We designated this mutant allele Kit(WS). Interestingly, homozygous mutants (Kit(WS/WS)) showed a peri-implantation lethal phenotype. Expression analyses of these nine genes in blastocysts suggested that Exoc1 was a prime candidate for this phenotype. We produced Exoc1 knockout mice, and the same peri-implantation lethal phenotype was seen in Exoc1(-/-) embryos. In addition, the polygenic effect without Exoc1 was investigated in genome-edited Kit(WE) mice carrying the Mb-scale deletion induced by the CRISPR/Cas9 system. As Kit(WE/WE) embryos did not exhibit the abnormal phenotype, which was seen in Kit(WS/WS). We concluded that peri-implantation lethality in Kit(WS/WS) was caused by a monogenic defect of Exoc1.


Assuntos
Deleção Cromossômica , Deleção de Genes , Genes Letais , Fenótipo , Animais , Blastocisto/metabolismo , Mapeamento Cromossômico , Cruzamentos Genéticos , Masculino , Camundongos , Camundongos Knockout , Mutação , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-kit/genética , Edição de RNA , Proteínas de Transporte Vesicular
5.
Exp Anim ; 62(4): 295-304, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24172193

RESUMO

The Cre/loxP system is a strategy for controlling temporal and/or spatial gene expression through genome alteration in mice. As successful Cre/loxP genome alteration depends on Cre-driver mice, Cre-reporter mice are essential for validation of Cre gene expression in vivo. In most Cre-reporter mouse strains, although the presence of reporter product indicates the expression of Cre recombinase, it has remained unclear whether a lack of reporter signal indicates either no Cre recombinase expression or insufficient reporter gene promoter activity. We produced a novel ROSA26 knock-in Cre-reporter C57BL/6N strain exhibiting green emission before and red after Cre-mediated recombination, designated as strain R26GRR. Ubiquitous green fluorescence and no red fluorescence were observed in R26GRR mice. To investigate the activation of tdsRed, EGFP-excised R26GRR, R26RR, mice were produced through the crossing of C57BL/6N mice with R26GRR/Ayu1-Cre F1 mice. R26RR mice showed extraordinarily strong red fluorescence in almost all tissues examined, suggesting ubiquitous activation of the second reporter in all tissues after Cre/loxP recombination. Moreover, endothelial cell lineage and pancreatic islet-specific expression of red fluorescence were detected in R26GRR/Tie2-Cre F1 mice and R26GRR /Ins1-Cre F1 mice, respectively. These results indicated that R26GRR mice are a useful novel Cre-reporter mouse strain. In addition, R26GRR mice with a pure C57BL/6N background represent a valuable source of green-to-red photoconvertible cells following Cre/loxP recombination for application in transplantation studies. The R26GRR mouse strain will be available from RIKEN BioResource Center (http://www.brc.riken.jp/lab/animal/en/).


Assuntos
Expressão Gênica , Genes Reporter/genética , Genes Reporter/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Integrases/genética , Integrases/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias , Células Endoteliais/metabolismo , Feminino , Técnicas de Introdução de Genes , Ilhotas Pancreáticas/metabolismo , Proteínas Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Recombinação Genética , Ubiquitinação , Proteína Vermelha Fluorescente
6.
Cell Reprogram ; 12(6): 679-88, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20977302

RESUMO

As the phenotype of a given single-gene mutation in mice is modulated by the genetic background of the inbred strain, embryonic stem (ES) cells derived from various inbred mouse strains are required to produce gene-targeted mice without the need for backcrossing and for detailed analysis of gene function in vivo. Here, we performed a comparative investigation of the effects of three culture conditions, LIF + KSR/ES medium described previously, High LIF + KSR/ES medium and iSTEM + LIF medium containing three inhibitors of glycogen synthase kinase 3, mitogen-activated protein kinase kinase, and fibroblast growth factor receptor signaling (3i), on the establishment of germline-competent ES cells derived from strains BALB/c and NZB mice. The results indicated that LIF + KSR/ES medium was permissive for the derivation of ES cells from NZB mice, which contribute to the somatic lineage in vivo, but not to the germline lineage. In contrast, ES cells that contribute to the makeup of chimeric mice were not propagated from blastocysts of BALB/c mice. Both germline and somatic competency were improved by increased LIF concentration in cultures of BALB/c ES cells, although we failed to establish germline-competent NZB ES cells using the same concentration of LIF. Unexpectedly, iSTEM + LIF medium containing 3i showed a negative effect on the derivation of NZB ES cells with normal chromosome numbers, but not on the maintenance of previously established ES cells. Our findings suggest that the stability of pluripotency in the inner cell mass isolated from blastocyst embryos may differ according to the genetic background of inbred mouse strains, and that although the concentration of LIF is a determinant for authentic pluripotency, including germline and somatic competency in BALB/c ES cells, additional factor(s) are required for commitment to germline lineage independent of somatic lineage in NZB ES cells.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Células-Tronco Embrionárias/fisiologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NZB , Animais , Células Cultivadas , Quimera , Técnicas de Cocultura , Células-Tronco Embrionárias/citologia , Feminino , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA