Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
FASEB J ; 38(5): e23533, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38451430

RESUMO

Rubeosis Iridis (RI) is characterized by an increase in neovascularization and inflammation factors in the iris. During angiogenesis, the urokinase plasminogen activator (uPA) and its receptor (uPAR) play a pivotal role in extracellular matrix remodeling, where uPAR regulates endothelial cell migration and proliferation through assembly with transmembrane receptors. Here, in the context of hypoxia-induced angiogenesis, the uPA/uPAR system blockage was investigated by using UPARANT in a novel ex vivo human iris organotypic angiogenesis assay. The effects of uPA/uPAR system antagonism in the humanized model of ocular pathologic angiogenesis were analyzed by sprouting angiogenesis and protein assays (western, dot blots, and co-immunoprecipitation) and correlated to vascular endothelial growth factor (VEGF) inhibition. Phosphoprotein and co-immunoprecipitation assay illustrated an unidentified antagonism of UPARANT in the interaction of uPAR with the low-density lipoprotein receptor-related protein-1 (LRP-1), resulting in inhibition of ß-catenin-mediated angiogenesis in this model. The effects of uPA/uPAR system inhibition were focal to endothelial cells ex vivo. Comparison between human iris endothelial cells and human retinal endothelial revealed an endothelial-specific mechanism of ß-catenin-mediated angiogenesis inhibited by uPA/uPAR system blockage and not by VEGF inhibition. Collectively, these findings broaden the understanding of the effects of the uPA/uPAR system antagonism in the context of angiogenesis, revealing non-canonical ß-catenin downstream effects mediated by LRP-1/uPAR interaction.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , beta Catenina , Angiogênese , Iris
2.
Nutrients ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337691

RESUMO

Glaucoma is characterized by cupping of the optic disc, apoptotic degeneration of retinal ganglion cells (RGCs) and their axons, and thinning of the retinal nerve fiber layer, with patchy loss of vision. Elevated intraocular pressure (IOP) is a major risk factor for hypertensive glaucoma and the only modifiable one. There is a need to find novel compounds that counteract other risk factors contributing to RGC degeneration. The oil derived from the wild olive tree (Olea europaea var. sylvestris), also called Acebuche (ACE), shows powerful anti-inflammatory, antioxidant and retinoprotective effects. We evaluated whether ACE oil could counteract glaucoma-related detrimental effects. To this aim, we fed mice either a regular or an ACE oil-enriched diet and then induced IOP elevation through intraocular injection of methylcellulose. An ACE oil-enriched diet suppressed glaucoma-dependent retinal glia reactivity and inflammation. The redox status of the glaucomatous retinas was restored to a control-like situation, and ischemia was alleviated by an ACE oil-enriched diet. Notably, retinal apoptosis was suppressed in the glaucomatous animals fed ACE oil. Furthermore, as shown by electroretinogram analyses, RGC electrophysiological functions were almost completely preserved by the ACE oil-enriched diet. These ameliorative effects were IOP-independent and might depend on ACE oil's peculiar composition. Although additional studies are needed, nutritional supplementation with ACE oil might represent an adjuvant in the management of glaucoma.


Assuntos
Antioxidantes , Glaucoma , Camundongos , Animais , Antioxidantes/farmacologia , Pressão Intraocular , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Anti-Inflamatórios/farmacologia
3.
Handb Exp Pharmacol ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982890

RESUMO

Distress, or negative stress, is known to considerably increase the incidence of several diseases, including cancer. There is indeed evidence from pre-clinical models that distress causes a catecholaminergic overdrive that, mainly through the activation of ß-adrenoceptors (ß-ARs), results in cancer cell growth and cancer progression. In addition, clinical studies have evidenced a role of negative stress in cancer progression. Moreover, plenty of data demonstrates that ß-blockers have positive effects in reducing the pro-tumorigenic activity of catecholamines, correlating with better outcomes in some type of cancers as evidenced by several clinical trials. Among ß-ARs, ß2-AR seems to be the main ß-AR subtype involved in tumor development and progression. However, there are data indicating that also ß1-AR and ß3-AR may be involved in certain tumors. In this chapter, we will review current knowledge on the role of the three ß-AR isoforms in carcinogenesis as well as in cancer growth and progression, with particular emphasis on recent studies that are opening new avenues in the use of ß-ARs as therapeutic targets in treating tumors.

4.
Transl Vis Sci Technol ; 12(11): 6, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917085

RESUMO

Purpose: Glaucoma is an eye-brain axis disorder characterized by loss of retinal ganglion cells (RGCs). Although the role of intraocular pressure (IOP) elevation in glaucoma has been established, the reduction of oxidative stress and inflammation has emerged as a promising target for neuronal tissue-supporting glaucoma management. Therefore, we evaluated the effect of a proprietary spearmint extract (SPE) on RGC density, activity, and neuronal health markers in a rat model of hypertensive glaucoma. Methods: Animals were divided in four groups: untreated healthy control and three glaucomatous groups receiving orally administered vehicle, SPE-low dose, or SPE-high dose for 28 days. Ocular hypertension was induced through intracameral injection of methylcellulose at day 15. At day 29, rats underwent electroretinogram (ERG) recordings, and retinas were analyzed for RGC density and markers of neural trophism, oxidative stress, and inflammation. Results: SPE exerted dose-dependent response benefits on all markers except for IOP elevation. SPE significantly improved RGC-related ERG responses, cell density, neurotrophins, oxidative stress, and inflammation markers. Also, in SPE-high rats, most of the parameters were not statistically different from those of healthy controls. Conclusions: SPE, a plant-based, polyphenolic extract, could be an effective nutritional support for neuronal tissues. Translational Relevance: These results suggest that SPE not only may be a complementary approach in support to hypotensive treatments for the management of glaucoma but may also serve as nutritional support in other ocular conditions where antioxidant, anti-inflammatory, and neuroprotective mechanism are often disrupted.


Assuntos
Glaucoma , Mentha spicata , Hipertensão Ocular , Animais , Ratos , Glaucoma/tratamento farmacológico , Hipertensão Ocular/tratamento farmacológico , Retina , Inflamação/tratamento farmacológico
5.
Cells ; 12(20)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887292

RESUMO

Nutraceuticals are natural substances whose anti-oxidant and anti-inflammatory properties may be used to treat retinal pathologies. Their efficacy is limited by poor bioavailability, which could be improved using nanocarriers. Lisosan G (LG), a fermented powder from whole grains, protects the retina from diabetic retinopathy (DR)-induced damage. For this study, we tested whether the encapsulation of LG in liposomes (LipoLG) may increase its protective effects. Diabetes was induced in mice via streptozotocin administration, and the mice were allowed to freely drink water or a water dispersion of two different doses of LG or of LipoLG. Electroretinographic recordings after 6 weeks showed that only the highest dose of LG could partially protect the retina from diabetes-induced functional deficits, while both doses of LipoLG were effective. An evaluation of molecular markers of oxidative stress, inflammation, apoptosis, vascular endothelial growth factor, and the blood-retinal barrier confirmed that the highest dose of LG only partially protected the retina from DR-induced changes, while virtually complete prevention was obtained with either dose of LipoLG. These data indicate that the efficacy of LG in contrasting DR is greatly enhanced by its encapsulation in liposomes and may lay the ground for new dietary supplements with improved therapeutic effects against DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Camundongos , Animais , Lipossomos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Retinopatia Diabética/metabolismo , Água
6.
Acta Neuropathol Commun ; 11(1): 146, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684640

RESUMO

Retinal ganglion cells are highly metabolically active requiring strictly regulated metabolism and functional mitochondria to keep ATP levels in physiological range. Imbalances in metabolism and mitochondrial mechanisms can be sufficient to induce a depletion of ATP, thus altering retinal ganglion cell viability and increasing cell susceptibility to death under stress. Altered metabolism and mitochondrial abnormalities have been demonstrated early in many optic neuropathies, including glaucoma, autosomal dominant optic atrophy, and Leber hereditary optic neuropathy. Pyrroloquinoline quinone (PQQ) is a quinone cofactor and is reported to have numerous effects on cellular and mitochondrial metabolism. However, the reported effects are highly context-dependent, indicating the need to study the mechanism of PQQ in specific systems. We investigated whether PQQ had a neuroprotective effect under different retinal ganglion cell stresses and assessed the effect of PQQ on metabolic and mitochondrial processes in cortical neuron and retinal ganglion cell specific contexts. We demonstrated that PQQ is neuroprotective in two models of retinal ganglion cell degeneration. We identified an increased ATP content in healthy retinal ganglion cell-related contexts both in in vitro and in vivo models. Although PQQ administration resulted in a moderate effect on mitochondrial biogenesis and content, a metabolic variation in non-diseased retinal ganglion cell-related tissues was identified after PQQ treatment. These results suggest the potential of PQQ as a novel neuroprotectant against retinal ganglion cell death.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Células Ganglionares da Retina , Cofator PQQ/farmacologia , Fármacos Neuroprotetores/farmacologia , Trifosfato de Adenosina
7.
Front Pharmacol ; 13: 1038730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313376

RESUMO

Age-related macular degeneration (AMD) is nowadays considered among the retinal diseases whose clinical management lacks established treatment approaches, mainly for its atrophic (dry) form. In this respect, the use of dietary patterns enriched in omega-3 and antioxidant xanthophylls has emerged as a promising approach to counteract dry AMD progression although the prophylactic potential of omega-3 of fish origin has been discussed. Whether enriched availability of omega-3 and xanthophylls may increase the effectiveness of diet supplementation in preventing dry AMD remains to be fully established. The present study aims at comparing the efficacy of an existing orally administered formulation based on lutein and fish oil, as a source of omega-3, with a novel formulation providing the combination of lutein and astaxanthin with Calanus oil (COil), which contains omega-3 together with their precursors policosanols. Using a mouse model of dry AMD based on subretinal injection of polyethylene glycol (PEG)-400, we assessed the comparative efficacy of both formulations on PEG-induced major hallmarks including oxidative stress, inflammation, glial reactivity and outer retinal thickness. Dietary supplementation with both mixtures has been found to exert a significant antioxidant and anti-inflammatory activity as reflected by the overall amelioration of the PEG-induced pathological hallmarks. Noteworthy, the formulation based on COil appeared to be more protective than the one based on fish oil, presumably because of the higher bioavailability of omega-3 in COil. These results support the use of dietary supplements combining omega-3 and xanthophylls in the prevention and treatment of AMD and suggest that the source of omega-3 might contribute to treatment efficacy.

8.
Cells ; 11(8)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455951

RESUMO

A major player in the homeostatic response to hypoxia is the hypoxia-inducible factor (HIF)-1 that transactivates a number of genes involved in neovessel proliferation in response to low oxygen tension. In the retina, hypoxia overstimulates ß-adrenoceptors (ß-ARs) which play a key role in the formation of pathogenic blood vessels. Among ß-ARs, ß3-AR expression is increased in proliferating vessels in concomitance with increased levels of HIF-1α and vascular endothelial growth factor (VEGF). Whether, similarly to VEGF, hypoxia-induced ß3-AR upregulation is driven by HIF-1 is still unknown. We used the mouse model of oxygen-induced retinopathy (OIR), an acknowledged model of retinal angiogenesis, to verify the hypothesis of ß3-AR transcriptional regulation by HIF-1. Investigation of ß3-AR regulation over OIR progression revealed that the expression profile of ß3-AR depends on oxygen tension, similar to VEGF. The additional evidence that HIF-1α stabilization decouples ß3-AR expression from oxygen levels further indicates that HIF-1 regulates the expression of the ß3-AR gene in the retina. Bioinformatics predicted the presence of six HIF-1 binding sites (HBS #1-6) upstream and inside the mouse ß3-AR gene. Among these, HBS #1 has been identified as the most suitable HBS for HIF-1 binding. Chromatin immunoprecipitation-qPCR demonstrated an effective binding of HIF-1 to HBS #1 indicating the existence of a physical interaction between HIF-1 and the ß3-AR gene. The additional finding that ß3-AR gene expression is concomitantly activated indicates the possibility that HIF-1 transactivates the ß3-AR gene. Our results are indicative of ß3-AR involvement in HIF-1-mediated response to hypoxia.


Assuntos
Fator 1 Induzível por Hipóxia , Receptores Adrenérgicos beta 3 , Doenças Retinianas , Fator A de Crescimento do Endotélio Vascular , Animais , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Med Res Rev ; 42(3): 1179-1201, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34967048

RESUMO

The role of the ß-adrenoceptors (ß-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of ß2-ARs, preclinical studies in ROP have also revealed that ß3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of ß3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of ß3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, ß3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of ß3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that ß3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested.


Assuntos
Doenças do Recém-Nascido , Neoplasias , Receptores Adrenérgicos/metabolismo , Humanos , Recém-Nascido , Propranolol/farmacologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
10.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944506

RESUMO

Renin-angiotensin systems produce angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7), which are able to induce opposite effects on circulation. This study in vivo assessed the effects induced by Ang II or Ang 1-7 on rat pial microcirculation during hypoperfusion-reperfusion, clarifying the mechanisms causing the imbalance between Ang II and Ang 1-7. The fluorescence microscopy was used to quantify the microvascular parameters. Hypoperfusion and reperfusion caused vasoconstriction, disruption of blood-brain barrier, reduction of capillary perfusion and an increase in reactive oxygen species production. Rats treated with Ang II showed exacerbated microvascular damage with stronger vasoconstriction compared to hypoperfused rats, a further increase in leakage, higher decrease in capillary perfusion and marker oxidative stress. Candesartan cilexetil (specific Ang II type 1 receptor (AT1R) antagonist) administration prior to Ang II prevented the effects induced by Ang II, blunting the hypoperfusion-reperfusion injury. Ang 1-7 or ACE2 activator administration, preserved the pial microcirculation from hypoperfusion-reperfusion damage. These effects of Ang 1-7 were blunted by a Mas (Mas oncogene-encoded protein) receptor antagonist, while Ang II type 2 receptor antagonists did not affect Ang 1-7-induced changes. In conclusion, Ang II and Ang 1-7 triggered different mechanisms through AT1R or MAS receptors able to affect cerebral microvascular injury.


Assuntos
Angiotensina II/administração & dosagem , Angiotensina I/administração & dosagem , Benzimidazóis/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Pia-Máter/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Tetrazóis/administração & dosagem , Angiotensina I/efeitos adversos , Angiotensina II/efeitos adversos , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Feminino , Masculino , Microcirculação/efeitos dos fármacos , Microscopia de Fluorescência , Fragmentos de Peptídeos/efeitos adversos , Pia-Máter/efeitos dos fármacos , Pia-Máter/metabolismo , Proto-Oncogene Mas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Tetrazóis/farmacologia
11.
J Mol Med (Berl) ; 98(11): 1629-1638, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940719

RESUMO

Proliferative retinopathies (PR) lead to an increase in neovascularization and inflammation factors, at times culminating in pathologic rubeosis iridis (RI). In mice, uveal puncture combined with injection of hypoxia-conditioned media mimics RI associated with proliferative retinopathies. Here, we investigated the effects of the urokinase plasminogen activator receptor (uPAR) antagonist-UPARANT-on the angiogenic and inflammatory processes that are dysregulated in this model. In addition, the effects of UPARANT were compared with those of anti-vascular endothelial growth factor (VEGF) therapies. Administration of UPARANT promptly decreased iris vasculature, while anti-VEGF effects were slower and less pronounced. Immunoblot and qPCR analysis suggested that UPARANT acts predominantly by reducing the upregulated inflammatory and extracellular matrix degradation responses. UPARANT appears to be more effective in comparison to anti-VEGF in the treatment of RI associated with PR in the murine model, by modulating multiple uPAR-associated signaling pathways. Furthermore, UPARANT effectiveness was maintained when systemically administered, which could open to novel improved therapies for proliferative ocular diseases, particularly those associated with PR. KEY MESSAGES: • Further evidence of UPARANT effectiveness in normalizing pathological iris neovascularization. • Both systemic and local administration of UPARANT reduce iris neovascularization in a model associated with proliferative retinopathies. • In the mouse models of rubeosis iridis associated with proliferative retinopathy, UPARANT displays stronger effects when compared with anti-vascular endothelial growth factor regimen.


Assuntos
Inibidores da Angiogênese/farmacologia , Oligopeptídeos/farmacologia , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Retinopatia Diabética , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia
12.
Naunyn Schmiedebergs Arch Pharmacol ; 393(2): 141-146, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31853614

RESUMO

ß3-Adrenoceptors exhibit a restricted expression pattern, particularly in humans. However, they have been found to be upregulated in various cancers and under several conditions associated with hypoperfusion such as congestive heart failure and diabetes for instance in the heart and other tissues. These conditions are frequently associated with hypoxia. Furthermore, direct induction of hypoxia has consistently been reported to cause upregulation of ß3-adrenoceptors across various tissues of multiple species including humans, rats, dogs, and fish. While a canonical hypoxia-response element in the promoter of the human ß3-adrenoceptor gene may play a role in this, no such sequence was found in rodent homologs. Moreover, not all upregulation of ß3-adrenoceptor protein is accompanied by increased expression of corresponding mRNA, indicating that the upregulation may involve factors other than transcriptional changes. We propose that upregulation of ß3-adrenoceptors at the mRNA and/or protein level is a general marker of hypoxic conditions. Moreover, it may be an additional pathway whereby cells and tissues adapt to reduced oxygen levels.


Assuntos
Hipóxia/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Receptores Adrenérgicos beta 3/genética , Regulação para Cima
13.
Cells ; 8(8)2019 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-31426601

RESUMO

Dysregulation of vascular networks is characteristic of eye diseases associated with retinal cell degeneration and visual loss. Visual impairment is also the consequence of photoreceptor degeneration in inherited eye diseases with a major inflammatory component, but without angiogenic profile. Among the pathways with high impact on vascular/degenerative diseases of the eye, a central role is played by a system formed by the ligand urokinase-type plasminogen activator (uPA) and its receptor uPAR. The uPAR system, although extensively investigated in tumors, still remains a key issue in vascular diseases of the eye and even less studied in inherited retinal pathologies such as retinitis pigmantosa (RP). Its spectrum of action has been extended far beyond a classical pro-angiogenic function and has emerged as a central actor in inflammation. Preclinical studies in more prevalent eye diseases characterized by neovascular formation, as in retinopathy of prematurity, wet macular degeneration and rubeosis iridis or vasopermeability excess as in diabetic retinopathy, suggest a critical role of increased uPAR signaling indicating the potentiality of its modulation to counteract neovessel formation and microvascular dysfunction. The additional observation that the uPAR system plays a major role in RP by limiting the inflammatory cascade triggered by rod degeneration rises further questions about its role in the diseased eye.


Assuntos
Inflamação/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Doenças Retinianas , Ativador de Plasminogênio Tipo Uroquinase , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/fisiologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/fisiologia
14.
J Mol Med (Berl) ; 97(9): 1273-1283, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243519

RESUMO

Puncture-induced iris neovascularization (rubeosis iridis; RI) in mice is associated with upregulation of extracellular matrix (ECM) degradation and inflammatory factors. The anti-angiogenic and anti-inflammatory efficacy of UPARANT in reducing RI was determined by noninvasive, in vivo iris vascular densitometry, and confirmed in vitro by quantitative vascular-specific immunostaining. Intravitreal administration of UPARANT successfully and rapidly reduced RI to non-induced control levels. Molecular analysis revealed that UPARANT inhibits formyl peptide receptors through a predominantly anti-inflammatory response, accompanied with a significant reduction in ECM degradation and inflammation markers. Similar results were observed with UPARANT administered systemically by subcutaneous injection. These data suggest that the tetrapeptide UPARANT is an effective anti-angiogenic agent for the treatment of RI, both by local and systemic administrations. The effectiveness of UPARANT in reducing RI in a model independent of the canonical vascular endothelial growth factor (VEGF) proposes an alternative for patients that do not respond to anti-VEGF treatments, which could improve treatment in proliferative ocular diseases. KEY MESSAGES: UPARANT is effective in the treatment of rubeosis iridis, both by local and systemic administrations. UPARANT can reduce VEGF-independent neovascularization.


Assuntos
Inibidores da Angiogênese/farmacologia , Iris/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Iris/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Br J Pharmacol ; 176(14): 2509-2524, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30874296

RESUMO

BACKGROUND AND PURPOSE: Stress-related catecholamines have a role in cancer and ß-adrenoceptors; specifically, ß2 -adrenoceptors have been identified as new targets in treating melanoma. Recently, ß3 -adrenoceptors have shown a pleiotropic effect on melanoma micro-environment leading to cancer progression. However, the mechanisms by which ß3 -adrenoceptors promote this progression remain poorly understood. Catecholamines affect the immune system by modulating several factors that can alter immune cell sub-population homeostasis. Understanding the mechanisms of cancer immune-tolerance is one of the most intriguing challenges in modern research. This study investigates the potential role of ß3 -adrenoceptors in immune-tolerance regulation. EXPERIMENTAL APPROACH: A mouse model of melanoma in which syngeneic B16-F10 cells were injected in C57BL-6 mice was used to evaluate the effect of ß-adrenoceptor blockade on the number and activity of immune cell sub-populations (Treg, NK, CD8, MDSC, macrophages, and neutrophils). Pharmacological and molecular approaches with ß-blockers (propranolol and SR59230A) and specific ß-adrenoceptor siRNAs targeting ß2 - or ß3 -adrenoceptors were used. KEY RESULTS: Only ß3 -, but not ß2 -adrenoceptors, were up-regulated under hypoxia in peripheral blood mononuclear cells and selectively expressed in immune cell sub-populations including Treg, MDSC, and NK. SR59230A and ß3 -adrenoceptor siRNAs increased NK and CD8 number and cytotoxicity, while they attenuated Treg and MDSC sub-populations in the tumour mass, blood, and spleen. SR59230A and ß3 -adrenoceptor siRNAs increased the ratio of M1/M2 macrophages and N1 granulocytes. CONCLUSIONS AND IMPLICATIONS: Our data suggest that ß3 -adrenoceptors are involved in immune-tolerance, which opens the way for new strategic therapies to overcome melanoma growth. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Assuntos
Melanoma Experimental/imunologia , Receptores Adrenérgicos beta 3/imunologia , Neoplasias Cutâneas/imunologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos beta 3/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
16.
Br J Pharmacol ; 176(14): 2496-2508, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30471093

RESUMO

Stress plays a role in tumourigenesis through catecholamines acting at ß-adrenoceptors including ß1 -, ß2 - and ß3 -adrenoceptors, and the use of ß-adrenoceptor antagonists seems to counteract tumour growth and progression. Preclinical evidence and meta-analysis data demonstrate that melanoma shows a positive response to ß-adrenoceptor blockers and in particular to propranolol acting mainly at ß1 - and ß2 -adrenoceptors. Although evidence suggesting that ß3 -adrenoceptors may play a role as a therapeutic target in infantile haemangiomas has been recently reviewed, a comprehensive analysis of the data available from preclinical studies supporting a possible role of ß3 -adrenoceptors in melanoma was not available. Here, we review data from the literature demonstrating that propranolol may be effective at counteracting melanoma growth, and we provide preclinical evidence that ß3 -adrenoceptors may also play a role in the pathophysiology of melanoma, thus opening the door for further clinical assays trying to explore ß3 -adrenoceptor blockers as novel alternatives for its treatment. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Melanoma/tratamento farmacológico , Receptores Adrenérgicos beta 3/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
17.
Oxid Med Cell Longev ; 2018: 6816508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538804

RESUMO

The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies show that ß3-adrenergic receptor (ß3-AR) is involved in tumor progression, playing an important role in metastasis. Among ß-adrenergic receptors, ß3-AR is the last identified member of this family, and it is involved in cancer cell survival and induction of stromal reactivity in the tumor microenvironment. ß3-AR is well known as a strong activator of uncoupling protein 1 (UCP1) in brown fat tissue. Interestingly, ß3-AR is strongly expressed in early embryo development and in many cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that ß3-AR is able to promote this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of mitochondrial dormancy through the induction of UCP2. The ß3-AR/UCP2 axis induces a strong reduction of mitochondrial activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by SR59230A, the specific ß3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate the presence of ß3-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Células-Tronco Embrionárias/metabolismo , Melanoma/metabolismo , Mitocôndrias/metabolismo , Propanolaminas/farmacologia , Animais , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Humanos , Melanoma/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Receptores Adrenérgicos beta 3/metabolismo
18.
Nutrients ; 10(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301197

RESUMO

In the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis, we recently demonstrated that diet supplementation with a balanced mixture of fatty acids (FAs), including omega 3 and omega 6, efficiently limited inflammatory events in the retina and prevented retinal ganglion cell (RGC) death, although mechanisms underlying the efficacy of FAs were to be elucidated. Whether FAs effectiveness was accompanied by efficient rescue of demyelinating events in the optic nerve was also unresolved. Finally, the possibility that RGC rescue might result in ameliorated visual performance remained to be investigated. Here, the EAE model of optic neuritis was used to investigate mechanisms underlying the anti-inflammatory effects of FAs, including their potential efficacy on macrophage polarization. In addition, we determined how FAs-induced rescue of RGC degeneration was related to optic nerve histopathology by performing ultrastructural morphometric analysis with transmission electron microscopy. Finally, RGC rescue was correlated with visual performance by recording photopic electroretinogram, an efficient methodology to unravel the role of RGCs in the generation of electroretinographic waves. We conclude that the ameliorative effects of FAs were dependent on a predominant anti-inflammatory action including a role on promoting the shift of macrophages from the inflammatory M1 phenotype towards the anti-inflammatory M2 phenotype. This would finally result in restored optic nerve histopathology and ameliorated visual performance. These findings can now offer new perspectives for implementing our knowledge on the effectiveness of diet supplementation in counteracting optic neuritis and suggest the importance of FAs as possible adjuvants in therapies against inflammatory diseases of the eye.


Assuntos
Anti-Inflamatórios/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Nervo Óptico/efeitos dos fármacos , Neurite Óptica/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Morte Celular , Suplementos Nutricionais , Eletrorretinografia , Encefalomielite Autoimune Experimental/patologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-6/uso terapêutico , Feminino , Inflamação/tratamento farmacológico , Inflamação/etiologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nervo Óptico/patologia , Neurite Óptica/etiologia , Neurite Óptica/patologia , Células Ganglionares da Retina/patologia , Acuidade Visual
19.
J Cell Mol Med ; 22(1): 613-627, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28940930

RESUMO

Hypoxia-dependent accumulation of vascular endothelial growth factor (VEGF) plays a major role in retinal diseases characterized by neovessel formation. In this study, we investigated whether the glial water channel Aquaporin-4 (AQP4) is involved in the hypoxia-dependent VEGF upregulation in the retina of a mouse model of oxygen-induced retinopathy (OIR). The expression levels of VEGF, the hypoxia-inducible factor-1α (HIF-1α) and the inducible form of nitric oxide synthase (iNOS), the production of nitric oxide (NO), the methylation status of the HIF-1 binding site (HBS) in the VEGF gene promoter, the binding of HIF-1α to the HBS, the retinal vascularization and function have been determined in the retina of wild-type (WT) and AQP4 knock out (KO) mice under hypoxic (OIR) or normoxic conditions. In response to 5 days of hypoxia, WT mice were characterized by (i) AQP4 upregulation, (ii) increased levels of VEGF, HIF-1α, iNOS and NO, (iii) pathological angiogenesis as determined by engorged retinal tufts and (iv) dysfunctional electroretinogram (ERG). AQP4 deletion prevents VEGF, iNOS and NO upregulation in response to hypoxia thus leading to reduced retinal damage although in the presence of high levels of HIF-1α. In AQP4 KO mice, HBS demethylation in response to the beginning of hypoxia is lower than in WT mice reducing the binding of HIF-1α to the VEGF gene promoter. We conclude that in the absence of AQP4, an impaired HBS demethylation prevents HIF-1 binding to the VEGF gene promoter and the relative VEGF transactivation, reducing the VEGF-induced retinal damage in response to hypoxia.


Assuntos
Aquaporina 4/deficiência , Metilação de DNA/genética , Hipóxia/genética , Oxigênio/efeitos adversos , Doenças Retinianas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Aquaporina 4/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Ilhas de CpG/genética , Eletrorretinografia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Knockout , Modelos Biológicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Retina/metabolismo , Retina/patologia , Doenças Retinianas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
BMC Gastroenterol ; 17(1): 104, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915899

RESUMO

BACKGROUND: Genetics plays an important role in the susceptibility to sporadic colorectal cancer (CRC). In the last 10 years genome-wide association studies (GWAS) have identified over 40 independent low penetrance polymorphic variants. However, these loci only explain around 1­4% of CRC heritability, highlighting the dire need of identifying novel risk loci. In this study, we focused our attention on the genetic variability of the TAS2R16 gene, encoding for one of the bitter taste receptors that selectively binds to salicin, a natural antipyretic that resembles aspirin. Given the importance of inflammation in CRC, we tested whether polymorphic variants in this gene could affect the risk of developing this neoplasia hypothesizing a role of TAS2R16 in modulating chronic inflammation within the gut. METHODS: We performed an association study using 6 tagging SNPs, (rs860170, rs978739, rs1357949, rs1525489, rs6466849, rs10268496) that cover all TAS2R16 genetic variability. The study was carried out on 1902 CRC cases and 1532 control individuals from four European countries. RESULTS: We did not find any statistically significant association between risk of developing CRC and selected SNPs. However, after stratification by histology (colon vs. rectum) we found that rs1525489 was associated with increased risk of rectal cancer with a (Ptrend of = 0.0071). CONCLUSIONS: Our data suggest that polymorphisms within TAS2R16 gene do not have a strong influence on colon cancer susceptibility, but a possible role in rectal cancer should be further evaluated in larger cohorts.


Assuntos
Neoplasias do Colo/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Neoplasias Retais/genética , Idoso , Estudos de Casos e Controles , República Tcheca , Feminino , Estudos de Associação Genética , Humanos , Itália , Lituânia , Masculino , Pessoa de Meia-Idade , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA