Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Med Chem ; 67(11): 8962-8987, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38748070

RESUMO

Dysregulation of histone methyl transferase nuclear receptor-binding SET domain 2 (NSD2) has been implicated in several hematological and solid malignancies. NSD2 is a large multidomain protein that carries histone writing and histone reading functions. To date, identifying inhibitors of the enzymatic activity of NSD2 has proven challenging in terms of potency and SET domain selectivity. Inhibition of the NSD2-PWWP1 domain using small molecules has been considered as an alternative approach to reduce NSD2-unregulated activity. In this article, we present novel computational chemistry approaches, encompassing free energy perturbation coupled to machine learning (FEP/ML) models as well as virtual screening (VS) activities, to identify high-affinity NSD2 PWWP1 binders. Through these activities, we have identified the most potent NSD2-PWWP1 binder reported so far in the literature: compound 34 (pIC50 = 8.2). The compounds identified herein represent useful tools for studying the role of PWWP1 domains for inhibition of human NSD2.


Assuntos
Desenho de Fármacos , Histona-Lisina N-Metiltransferase , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/química , Ligantes , Humanos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Aprendizado de Máquina , Modelos Moleculares , Domínios Proteicos
2.
J Med Chem ; 67(6): 4541-4559, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466661

RESUMO

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.


Assuntos
Neoplasias , Humanos , Entropia , Metionina Adenosiltransferase/metabolismo
3.
J Med Chem ; 66(13): 8782-8807, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37343272

RESUMO

Recent clinical reports have highlighted the need for wild-type (WT) and mutant dual inhibitors of c-MET kinase for the treatment of cancer. We report herein a novel chemical series of ATP competitive type-III inhibitors of WT and D1228V mutant c-MET. Using a combination of structure-based drug design and computational analyses, ligand 2 was optimized to a highly selective chemical series with nanomolar activities in biochemical and cellular settings. Representatives of the series demonstrate excellent pharmacokinetic profiles in rat in vivo studies with promising free-brain exposures, paving the way for the design of brain permeable drugs for the treatment of c-MET driven cancers.


Assuntos
Antineoplásicos , Neoplasias , Ratos , Animais , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met , Desenho de Fármacos , Trifosfato de Adenosina , Antineoplásicos/farmacologia
4.
Bioorg Med Chem Lett ; 75: 128948, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987508

RESUMO

The c-MET receptor tyrosine kinase has received considerable attention as a cancer drug target yet there remains a need for inhibitors which are selective for c-MET and able to target emerging drug-resistant mutants. We report here the discovery, by screening a DNA-encoded chemical library, of a highly selective c-MET inhibitor which was shown by X-ray crystallography to bind to the kinase in an unprecedented manner. These results represent a novel mode of inhibiting c-MET with a small molecule and may provide a route to targeting drug-resistant forms of the kinase whilst avoiding potential toxicity issues associated with broad kinome inhibition.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-met , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , DNA , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química
5.
J Med Chem ; 65(4): 3306-3331, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35133824

RESUMO

ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit. The result is compound 5 (AZ13824374), a highly potent and selective ATAD2 inhibitor which shows cellular target engagement and antiproliferative activity in a range of breast cancer models.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Especificidade por Substrato , Ensaio Tumoral de Célula-Tronco
6.
Commun Biol ; 4(1): 1273, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754068

RESUMO

Bromodomain-containing protein 4 (BRD4) is an epigenetic reader and oncology drug target that regulates gene transcription through binding to acetylated chromatin via bromodomains. Phosphorylation by casein kinase II (CK2) regulates BRD4 function, is necessary for active transcription and is involved in resistance to BRD4 drug inhibition in triple-negative breast cancer. Here, we provide the first biophysical analysis of BRD4 phospho-regulation. Using integrative structural biology, we show that phosphorylation by CK2 modulates the dimerization of human BRD4. We identify two conserved regions, a coiled-coil motif and the Basic-residue enriched Interaction Domain (BID), essential for the BRD4 structural rearrangement, which we term the phosphorylation-dependent dimerization domain (PDD). Finally, we demonstrate that bivalent inhibitors induce a conformational change within BRD4 dimers in vitro and in cancer cells. Our results enable the proposal of a model for BRD4 activation critical for the characterization of its protein-protein interaction network and for the development of more specific therapeutics.


Assuntos
Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosforilação , Fatores de Transcrição/metabolismo
7.
J Am Chem Soc ; 143(12): 4600-4606, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33750116

RESUMO

Discovering molecules that regulate closely related protein isoforms is challenging, and in many cases the consequences of isoform-specific pharmacological regulation remains unknown. RAF isoforms are commonly mutated oncogenes that serve as effector kinases in MAP kinase signaling. BRAF/CRAF heterodimers are believed to be the primary RAF signaling species, and many RAF inhibitors lead to a "paradoxical activation" of RAF kinase activity through transactivation of the CRAF protomer; this leads to resistance mechanisms and secondary tumors. It has been hypothesized that CRAF-selective inhibition might bypass paradoxical activation, but no CRAF-selective inhibitor has been reported and the consequences of pharmacologically inhibiting CRAF have remained unknown. Here, we use bio-orthogonal ligand tethering (BOLT) to selectively target inhibitors to CRAF. Our results suggest that selective CRAF inhibition promotes paradoxical activation and exemplify how BOLT may be used to triage potential targets for drug discovery before any target-selective small molecules are known.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
ACS Med Chem Lett ; 10(9): 1322-1327, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531204

RESUMO

Many small molecule inhibitors of the cMET receptor tyrosine kinase have been evaluated in clinical trials for the treatment of cancer and resistance-conferring mutations of cMET are beginning to be reported for a number of such compounds. There is now a need to understand specific cMET mutations at the molecular level, particularly concerning small molecule recognition. Toward this end, we report here the first crystal structures of the recent clinically observed resistance-conferring D1228V cMET mutant in complex with small molecule inhibitors, along with a crystal structure of wild-type cMET bound by the clinical compound savolitinib and supporting cellular, biochemical, and biophysical data. Our findings indicate that the D1228V alteration induces conformational changes in the kinase, which could have implications for small molecule inhibitor design. The data we report here increases our molecular understanding of the D1228V cMET mutation and provides insight for future inhibitor design.

9.
SLAS Discov ; 24(2): 121-132, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30543471

RESUMO

Methods to measure cellular target engagement are increasingly being used in early drug discovery. The Cellular Thermal Shift Assay (CETSA) is one such method. CETSA can investigate target engagement by measuring changes in protein thermal stability upon compound binding within the intracellular environment. It can be performed in high-throughput, microplate-based formats to enable broader application to early drug discovery campaigns, though high-throughput forms of CETSA have only been reported for a limited number of targets. CETSA offers the advantage of investigating the target of interest in its physiological environment and native state, but it is not clear yet how well this technology correlates to more established and conventional cellular and biochemical approaches widely used in drug discovery. We report two novel high-throughput CETSA (CETSA HT) assays for B-Raf and PARP1, demonstrating the application of this technology to additional targets. By performing comparative analyses with other assays, we show that CETSA HT correlates well with other screening technologies and can be applied throughout various stages of hit identification and lead optimization. Our results support the use of CETSA HT as a broadly applicable and valuable methodology to help drive drug discovery campaigns to molecules that engage the intended target in cells.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala/métodos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Temperatura , Linhagem Celular Tumoral , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo
10.
Mol Pharmacol ; 91(1): 25-38, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27803241

RESUMO

The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy.


Assuntos
Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Técnicas Biossensoriais , Células CHO , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Cinética , Ensaio Radioligante , Receptor A2A de Adenosina/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo
11.
Nat Chem Biol ; 12(12): 1097-1104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27775716

RESUMO

Proteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode. The evidence provided here was obtained in a variety of biophysical and cellular experiments. The bivalent binding results in very high cellular potency for BRD4 binding and pharmacological responses such as disruption of BRD4-mediator complex subunit 1 foci with an EC50 of 100 pM. These compounds will be of considerable utility as BET/BRD4 chemical probes. This work illustrates a novel concept in ligand design-simultaneous targeting of two separate domains with a drug-like small molecule-providing precedent for a potentially more effective paradigm for developing ligands for other multi-domain proteins.


Assuntos
Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Domínios Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Transcrição/metabolismo
12.
Mol Cancer Ther ; 15(11): 2563-2574, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27573426

RESUMO

The bromodomain and extraterminal (BET) protein BRD4 regulates gene expression via recruitment of transcriptional regulatory complexes to acetylated chromatin. Pharmacological targeting of BRD4 bromodomains by small molecule inhibitors has proven to be an effective means to disrupt aberrant transcriptional programs critical for tumor growth and/or survival. Herein, we report AZD5153, a potent, selective, and orally available BET/BRD4 bromodomain inhibitor possessing a bivalent binding mode. Unlike previously described monovalent inhibitors, AZD5153 ligates two bromodomains in BRD4 simultaneously. The enhanced avidity afforded through bivalent binding translates into increased cellular and antitumor activity in preclinical hematologic tumor models. In vivo administration of AZD5153 led to tumor stasis or regression in multiple xenograft models of acute myeloid leukemia, multiple myeloma, and diffuse large B-cell lymphoma. The relationship between AZD5153 exposure and efficacy suggests that prolonged BRD4 target coverage is a primary efficacy driver. AZD5153 treatment markedly affects transcriptional programs of MYC, E2F, and mTOR. Of note, mTOR pathway modulation is associated with cell line sensitivity to AZD5153. Transcriptional modulation of MYC and HEXIM1 was confirmed in AZD5153-treated human whole blood, thus supporting their use as clinical pharmacodynamic biomarkers. This study establishes AZD5153 as a highly potent, orally available BET/BRD4 inhibitor and provides a rationale for clinical development in hematologic malignancies. Mol Cancer Ther; 15(11); 2563-74. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hematológicas/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Biomarcadores , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Terapia de Alvo Molecular , Proteínas Nucleares/química , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Eur J Pharmacol ; 762: 430-42, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26101059

RESUMO

G protein-coupled receptor 119 (GPR119) is involved in regulating metabolic homoeostasis, with GPR119 agonists targeted for the treatment of type-2 diabetes and obesity. Using the endogenous agonist oleoylethanolamide and a number of small molecule synthetic agonists we have investigated the temporal dynamics of receptor signalling. Using both a dynamic luminescence biosensor-based assay and an endpoint cAMP accumulation assay we show that agonist-driven desensitization is not a major regulatory mechanism for GPR119 despite robust activation responses, regardless of the agonist used. Temporal analysis of the cAMP responses demonstrated sustained signalling resistant to washout for some, but not all of the agonists tested. Further analysis indicated that the sustained effects of one synthetic agonist AR-231,453 were consistent with a role for slow dissociation kinetics. In contrast, the sustained responses to MBX-2982 and AZ1 appeared to involve membrane deposition. We also detect wash-resistant responses to AR-231,453 at the level of physiologically relevant responses in an endogenous expression system (GLP-1 secretion in GLUTag cells). In conclusion, our findings indicate that in a recombinant expression system GPR119 activation is sustained, with little evidence of pronounced receptor desensitization, and for some ligands persistent agonist responses continue despite removal of excess agonist. This provides novel understanding of the temporal responses profiles of potential drug candidates targetting GPR119, and highlights the importance of carefully examining the the mechanisms through which GPCRs generate sustained responses.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Cinética
14.
Anal Biochem ; 308(2): 223-31, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12419333

RESUMO

We used two kinases, c-jun N terminal kinase (JNK-1) and protein kinase C (PKC), as model enzymes to evaluate the potential of fluorescence polarization (FP) for high-throughput screening and the susceptibility of these assays to compound interference. For JNK-1 the enzyme kinetics in the FP assay were consistent with those found in a [gamma-33P]ATP filter wash assay. Determined pIC(50)s for nonfluorescent JNK-1 inhibitors were also consistent with those found in the filter wash assay. In contrast, fluorescent compounds were found to interfere with the JNK-1 FP assay, appearing as false positives, defined by their lack of activity in the filter wash assay. We also developed a second assay using a different kinase, protein kinase C, which was used to test a 5000 compound diversity set. As for JNK-1, interference from fluorescent compounds caused a high false positive rate. The Molecular Devices Corporation 'FLARe' instrument is capable of discriminating between fluorophores on the basis of their fluorescence (excited state) lifetime, and may assist in reducing compound interference in fluorescent assays. In both model FP kinase assays described here some, although not complete, reduction in interference from fluorescent compounds was achieved by the use of FLARe.


Assuntos
Imunoensaio de Fluorescência por Polarização/métodos , Proteínas Serina-Treonina Quinases/análise , Fator 2 Ativador da Transcrição , Trifosfato de Adenosina/metabolismo , Anticorpos Monoclonais/metabolismo , Ligação Competitiva , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fluoresceína/química , Corantes Fluorescentes/química , Humanos , Concentração Inibidora 50 , Proteínas Quinases JNK Ativadas por Mitógeno , Filtros Microporos , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteína Quinase C/análise , Proteína Quinase C/antagonistas & inibidores , Fatores de Transcrição/análise , Fatores de Transcrição/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA