Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Commun ; 15(1): 2280, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480738

RESUMO

Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Camundongos , Animais , Células Dendríticas , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Linfócitos T CD8-Positivos , Apresentação Cruzada
2.
EMBO Mol Med ; 15(11): e17694, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635627

RESUMO

Therapies reconstituting autologous antiviral immunocompetence may represent an important prophylaxis and treatment for immunosuppressed individuals. Following hematopoietic cell transplantation (HCT), patients are susceptible to Herpesviridae including cytomegalovirus (CMV). We show in a murine model of HCT that macrophage colony-stimulating factor (M-CSF) promoted rapid antiviral activity and protection from viremia caused by murine CMV. M-CSF given at transplantation stimulated sequential myeloid and natural killer (NK) cell differentiation culminating in increased NK cell numbers, production of granzyme B and interferon-γ. This depended upon M-CSF-induced myelopoiesis leading to IL15Rα-mediated presentation of IL-15 on monocytes, augmented by type I interferons from plasmacytoid dendritic cells. Demonstrating relevance to human HCT, M-CSF induced myelomonocytic IL15Rα expression and numbers of functional NK cells in G-CSF-mobilized hematopoietic stem and progenitor cells. Together, M-CSF-induced myelopoiesis triggered an integrated differentiation of myeloid and NK cells to protect HCT recipients from CMV. Thus, our results identify a rationale for the therapeutic use of M-CSF to rapidly reconstitute antiviral activity in immunocompromised individuals, which may provide a general paradigm to boost innate antiviral immunocompetence using host-directed therapies.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Citomegalovirus , Fator Estimulador de Colônias de Macrófagos , Transplante de Células-Tronco Hematopoéticas/métodos , Infecções por Citomegalovirus/prevenção & controle , Hematopoese , Antivirais/farmacologia , Antivirais/uso terapêutico , Diferenciação Celular
3.
Methods Mol Biol ; 2618: 133-145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36905514

RESUMO

Dendritic cells (DCs) represent one of the most important immune cell subsets in preventing the host from pathogen invasion by promoting both innate and adaptive immunity. Most research on human dendritic cells has focused on the easy-to-obtain dendritic cells derived in vitro from monocytes (MoDCs). However, many questions remain unanswered regarding the role of different dendritic cell types. The investigation of their roles in human immunity is hampered by their rarity and fragility, which especially holds true for type 1 conventional dendritic cells (cDC1s) and for plasmacytoid dendritic cells (pDCs). In vitro differentiation from hematopoietic progenitors emerged as a common way to produce different DC types, but the efficiency and reproducibility of these protocols needed to be improved and the extent to which the DCs generated in vitro resembled their in vivo counterparts required a more rigorous and global assessment. Here, we describe a cost-effective and robust in vitro differentiation system for the production of cDC1s and pDCs equivalent to their blood counterparts, from cord blood CD34+ hematopoietic stem cells (HSCs) cultured on a stromal feeder layer with a combination of cytokines and growth factors.


Assuntos
Células Dendríticas , Células-Tronco Hematopoéticas , Humanos , Reprodutibilidade dos Testes , Diferenciação Celular , Antígenos CD34/metabolismo
4.
Methods Mol Biol ; 2618: 319-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36905526

RESUMO

Dendritic cells (DCs) orchestrate innate and adaptive immunity, by translating the sensing of distinct danger signals into the induction of different effector lymphocyte responses, to induce the defense mechanisms the best suited to face the threat. Hence, DCs are very plastic, which results from two key characteristics. First, DCs encompass distinct cell types specialized in different functions. Second, each DC type can undergo different activation states, fine-tuning its functions depending on its tissue microenvironment and the pathophysiological context, by adapting the output signals it delivers to the input signals it receives. Hence, to better understand DC biology and harness it in the clinic, we must determine which combinations of DC types and activation states mediate which functions and how.To decipher the nature, functions, and regulation of DC types and their physiological activation states, one of the methods that can be harnessed most successfully is ex vivo single-cell RNA sequencing (scRNAseq). However, for new users of this approach, determining which analytics strategy and computational tools to choose can be quite challenging, considering the rapid evolution and broad burgeoning in the field. In addition, awareness must be raised on the need for specific, robust, and tractable strategies to annotate cells for cell type identity and activation states. It is also important to emphasize the necessity of examining whether similar cell activation trajectories are inferred by using different, complementary methods. In this chapter, we take these issues into account for providing a pipeline for scRNAseq analysis and illustrating it with a tutorial reanalyzing a public dataset of mononuclear phagocytes isolated from the lungs of naïve or tumor-bearing mice. We describe this pipeline step-by-step, including data quality controls, dimensionality reduction, cell clustering, cell cluster annotation, inference of the cell activation trajectories, and investigation of the underpinning molecular regulation. It is accompanied with a more complete tutorial on GitHub. We hope that this method will be helpful for both wet lab and bioinformatics researchers interested in harnessing scRNAseq data for deciphering the biology of DCs or other cell types and that it will contribute to establishing high standards in the field.


Assuntos
Células Dendríticas , Neoplasias , Animais , Camundongos , Biologia Computacional , Neoplasias/metabolismo , Análise de Sequência de RNA , Microambiente Tumoral
5.
Sci Immunol ; 8(79): eabn6612, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638189

RESUMO

T cells that recognize tumor antigens are crucial for mounting antitumor immune responses. Induction of antitumor T cells in immunogenic tumors depends on STING, the intracellular innate immune receptor for cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) and related cyclic dinucleotides (CDNs). However, the optimal way to leverage STING activation in nonimmunogenic tumors is still unclear. Here, we show that cGAMP delivery by intratumoral injection of virus-like particles (cGAMP-VLP) led to differentiation of circulating tumor-specific T cells, decreased tumor regulatory T cells (Tregs), and antitumoral responses that synergized with PD1 blockade. By contrast, intratumoral injection of the synthetic CDN ADU-S100 led to tumor necrosis and systemic T cell activation but simultaneously depleted immune cells from injected tumors and induced minimal priming of circulating tumor-specific T cells. The antitumor effects of cGAMP-VLP required type 1 conventional dendritic cells (cDC1), whereas ADU-S100 eliminated cDC1 from injected tumors. cGAMP-VLP preferentially targeted STING in dendritic cells at a 1000-fold smaller dose than ADU-S100. Subcutaneous administration of cGAMP-VLP showed synergy when combined with PD1 blockade or a tumor Treg-depleting antibody to elicit systemic tumor-specific T cells and antitumor activity, leading to complete and durable tumor eradication in the case of tumor Treg depletion. These findings show that cell targeting of STING stimulation shapes the antitumor T cell response and identify a therapeutic strategy to enhance T cell-targeted immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunidade , Células Dendríticas
6.
Cell Rep ; 42(2): 112046, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708514

RESUMO

The diversity of mononuclear phagocyte (MNP) subpopulations across tissues is one of the key physiological characteristics of the immune system. Here, we focus on understanding the metabolic variability of MNPs through metabolic network analysis applied to three large-scale transcriptional datasets: we introduce (1) an ImmGen MNP open-source dataset of 337 samples across 26 tissues; (2) a myeloid subset of ImmGen Phase I dataset (202 MNP samples); and (3) a myeloid mouse single-cell RNA sequencing (scRNA-seq) dataset (51,364 cells) assembled based on Tabula Muris Senis. To analyze such large-scale datasets, we develop a network-based computational approach, genes and metabolites (GAM) clustering, for unbiased identification of the key metabolic subnetworks based on transcriptional profiles. We define 9 metabolic subnetworks that encapsulate the metabolic differences within MNP from 38 different tissues. Obtained modules reveal that cholesterol synthesis appears particularly active within the migratory dendritic cells, while glutathione synthesis is essential for cysteinyl leukotriene production by peritoneal and lung macrophages.


Assuntos
Fagócitos , Análise de Célula Única , Animais , Camundongos
7.
Immunity ; 55(11): 2103-2117.e10, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323311

RESUMO

The surface of the central nervous system (CNS) is protected by the meninges, which contain a dense network of meningeal macrophages (MMs). Here, we examined the role of tissue-resident MM in viral infection. MHC-II- MM were abundant neonatally, whereas MHC-II+ MM appeared over time. These barrier macrophages differentially responded to in vivo peripheral challenges such as LPS, SARS-CoV-2, and lymphocytic choriomeningitis virus (LCMV). Peripheral LCMV infection, which was asymptomatic, led to a transient infection and activation of the meninges. Mice lacking macrophages but conserving brain microglia, or mice bearing macrophage-specific deletion of Stat1 or Ifnar, exhibited extensive viral spread into the CNS. Transcranial pharmacological depletion strategies targeting MM locally resulted in several areas of the meninges becoming infected and fatal meningitis. Low numbers of MHC-II+ MM, which is seen upon LPS challenge or in neonates, corelated with higher viral load upon infection. Thus, MMs protect against viral infection and may present targets for therapeutic manipulation.


Assuntos
COVID-19 , Coriomeningite Linfocítica , Animais , Camundongos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos , Meninges
8.
Clin Transl Immunology ; 10(7): e1305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277006

RESUMO

OBJECTIVES: To better understand how immune responses may be harnessed against breast cancer, we investigated which immune cell types and signalling pathways are required for spontaneous control of a mouse model of mammary adenocarcinoma. METHODS: The NOP23 mammary adenocarcinoma cell line expressing epitopes derived from the ovalbumin model antigen is spontaneously controlled when orthotopically engrafted in syngeneic C57BL/6 mice. We combined this breast cancer model with antibody-mediated depletion of lymphocytes and with mutant mice affected in interferon (IFN) or type 1 conventional dendritic cell (cDC1) responses. We monitored tumor growth and immune infiltration including the activation of cognate ovalbumin-specific T cells. RESULTS: Breast cancer immunosurveillance required cDC1, NK/NK T cells, conventional CD4+ T cells and CD8+ cytotoxic T lymphocytes (CTLs). cDC1 were required constitutively, but especially during T-cell priming. In tumors, cDC1 were interacting simultaneously with CD4+ T cells and tumor-specific CTLs. cDC1 expression of the XCR1 chemokine receptor and of the T-cell-attracting or T-cell-activating cytokines CXCL9, IL-12 and IL-15 was dispensable for tumor rejection, whereas IFN responses were necessary, including cDC1-intrinsic signalling by STAT1 and IFN-γ but not type I IFN (IFN-I). cDC1 and IFNs promoted CD4+ and CD8+ T-cell infiltration, terminal differentiation and effector functions. In breast cancer patients, high intratumor expression of genes specific to cDC1, CTLs, CD4+ T cells or IFN responses is associated with a better prognosis. CONCLUSION: Interferons and cDC1 are critical for breast cancer immunosurveillance. IFN-γ plays a prominent role over IFN-I in licensing cDC1 for efficient T-cell activation.

9.
Sci Immunol ; 6(61)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244313

RESUMO

Conventional type 1 dendritic cells (cDC1s) are critical for antitumor immunity. They acquire antigens from dying tumor cells and cross-present them to CD8+ T cells, promoting the expansion of tumor-specific cytotoxic T cells. However, the signaling pathways that govern the antitumor functions of cDC1s in immunogenic tumors are poorly understood. Using single-cell transcriptomics to examine the molecular pathways regulating intratumoral cDC1 maturation, we found nuclear factor κB (NF-κB) and interferon (IFN) pathways to be highly enriched in a subset of functionally mature cDC1s. We identified an NF-κB-dependent and IFN-γ-regulated gene network in cDC1s, including cytokines and chemokines specialized in the recruitment and activation of cytotoxic T cells. By mapping the trajectory of intratumoral cDC1 maturation, we demonstrated the dynamic reprogramming of tumor-infiltrating cDC1s by NF-κB and IFN signaling pathways. This maturation process was perturbed by specific inactivation of either NF-κB or IFN regulatory factor 1 (IRF1) in cDC1s, resulting in impaired expression of IFN-γ-responsive genes and consequently a failure to efficiently recruit and activate antitumoral CD8+ T cells. Last, we demonstrate the relevance of these findings to patients with melanoma, showing that activation of the NF-κB/IRF1 axis in association with cDC1s is linked with improved clinical outcome. The NF-κB/IRF1 axis in cDC1s may therefore represent an important focal point for the development of new diagnostic and therapeutic approaches to improve cancer immunotherapy.


Assuntos
Células Dendríticas/imunologia , Fator Regulador 1 de Interferon/imunologia , Melanoma/imunologia , NF-kappa B/imunologia , Neoplasias Cutâneas/imunologia , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Regulador 1 de Interferon/genética , Interferon gama/imunologia , Estimativa de Kaplan-Meier , Masculino , Melanoma/genética , Melanoma/mortalidade , Camundongos Transgênicos , NF-kappa B/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade
10.
Front Immunol ; 11: 559166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101275

RESUMO

Currently three bona fide dendritic cell (DC) types are distinguished in human blood. Herein we focus on type 2 DCs (DC2s) and compare the three defining markers CD1c, CD172, and CD301. When using CD1c to define DC2s, a CD14+ and a CD14- subset can be detected. The CD14+ subset shares features with monocytes, and this includes substantially higher expression levels for CD64, CD115, CD163, and S100A8/9. We review the current knowledge of these CD1c+CD14+ cells as compared to the CD1c+CD14- cells with respect to phenotype, function, transcriptomics, and ontogeny. Here, we discuss informative mutations, which suggest that two populations have different developmental requirements. In addition, we cover subsets of CD11c+CD8- DC2s in the mouse, where CLEC12A+ESAMlow cells, as compared to the CLEC12A-ESAMhigh subset, also express higher levels of monocyte-associated markers CD14, CD3, and CD115. Finally, we summarize, for both man and mouse, the data on lower antigen presentation and higher cytokine production in the monocyte-marker expressing DC2 subset, which demonstrate that the DC2 subsets are also functionally distinct.


Assuntos
Antígenos CD1/metabolismo , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Monócitos/imunologia , Animais , Antígenos de Diferenciação/metabolismo , Assialoglicoproteínas/metabolismo , Diferenciação Celular , Linhagem da Célula , Citocinas/metabolismo , Humanos , Imunidade Celular , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Receptores Imunológicos/metabolismo
11.
Nat Immunol ; 21(9): 983-997, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690951

RESUMO

Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN-I). What other functions pDCs exert in vivo during viral infections is controversial, and more studies are needed to understand their orchestration. In the present study, we characterize in depth and link pDC activation states in animals infected by mouse cytomegalovirus by combining Ifnb1 reporter mice with flow cytometry, single-cell RNA sequencing, confocal microscopy and a cognate CD4 T cell activation assay. We show that IFN-I production and T cell activation were performed by the same pDC, but these occurred sequentially in time and in different micro-anatomical locations. In addition, we show that pDC commitment to IFN-I production was marked early on by their downregulation of leukemia inhibitory factor receptor and was promoted by cell-intrinsic tumor necrosis factor signaling. We propose a new model for how individual pDCs are endowed to exert different functions in vivo during a viral infection, in a manner tightly orchestrated in time and space.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Infecções por Herpesviridae/imunologia , Muromegalovirus/fisiologia , Animais , Células Cultivadas , Interferon Tipo I/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator de Necrose Tumoral alfa/metabolismo
12.
Mol Immunol ; 123: 40-59, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413788

RESUMO

Dendritic cells (DCs) are mononuclear phagocytes that are specialized in the induction and functional polarization of effector lymphocytes, thus orchestrating immune defenses against infections and cancer. The population of DC encompasses distinct cell types that vary in their efficacy for complementary functions and are thus likely involved in defending the body against different threats. Plasmacytoid DCs specialize in the production of high levels of the antiviral cytokines type I interferons. Type 1 conventional DCs (cDC1s) excel in the activation of cytotoxic CD8+ T cells (CTLs) which are critical for defense against cancer and infections by intracellular pathogens. Type 2 conventional DCs (cDC2s) prime helper CD4+ T cells for the production of type 2 cytokines underpinning immune defenses against worms or of IL-17 promoting control of infections by extracellular bacteria or fungi. Hence, clinically manipulating the development and functions of DC types could have a major impact for improving treatments against many diseases. However, the rarity and fragility of human DC types is impeding advancement towards this goal. To overcome this roadblock, major efforts are ongoing to generate in vitro large numbers of distinct human DC types. We review here the current state of this research field, emphasizing recent breakthrough and proposing future priorities. We also pinpoint the necessity to develop a consensus nomenclature and rigorous methodologies to ensure proper identification and characterization of human DC types. Finally, we elaborate on how faithful in vitro models of human DC types can accelerate our understanding of the biology of these cells and the engineering of next generation vaccines or immunotherapies against viral infections or cancer.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/fisiologia , Modelos Teóricos , Animais , Apresentação de Antígeno/fisiologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Células Dendríticas/patologia , Humanos , Ativação Linfocitária , Reprodutibilidade dos Testes
13.
Sci Immunol ; 5(46)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303573

RESUMO

Dendritic cells play a key role in the orchestration of antitumor immune responses. The cDC1 (conventional dendritic cell 1) subset has been shown to be essential for antitumor responses and response to immunotherapy, but its precise role in humans is largely unexplored. Using a multidisciplinary approach, we demonstrate that human cDC1 play an important role in the antitumor immune response through their capacity to produce type III interferon (IFN-λ). By analyzing a large cohort of breast primary tumors and public transcriptomic datasets, we observed specific production of IFN-λ1 by cDC1. In addition, both IFN-λ1 and its receptor were associated with favorable patient outcomes. We show that IFN-III promotes a TH1 microenvironment through increased production of IL-12p70, IFN-γ, and cytotoxic lymphocyte-recruiting chemokines. Last, we showed that engagement of TLR3 is a therapeutic strategy to induce IFN-III production by tumor-associated cDC1. These data provide insight into potential IFN- or cDC1-targeting antitumor therapies.


Assuntos
Neoplasias da Mama/imunologia , Células Dendríticas/imunologia , Interferons/biossíntese , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Interferon lambda
14.
Cell Rep ; 31(1): 107479, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268097

RESUMO

The monocyte-derived phagocytes termed LysoDCs are hallmarks of Peyer's patches, where their main function is to sample intestinal microorganisms. Here, we study their differentiation pathways in relation with their sampling, migratory, and T cell-priming abilities. Among four identified LysoDC differentiation stages displaying similar phagocytic activity, one is located in follicles, and the others reside in subepithelial domes (SED), where they proliferate and mature as they get closer to the epithelium. Mature LysoDCs but not macrophages express a gene set in common with conventional dendritic cells and prime naive helper T cells in vitro. At steady state, they do not migrate into naive T cell-enriched interfollicular regions (IFRs), but upon stimulation, they express the chemokine receptor CCR7 and migrate from SED to the IFR periphery, where they strongly interact with proliferative immune cells. Finally, we show that LysoDCs populate human Peyer's patches, strengthening their interest as targets for modulating intestinal immunity.


Assuntos
Diferenciação Celular/imunologia , Nódulos Linfáticos Agregados/citologia , Fagócitos/citologia , Animais , Movimento Celular/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Mucosa Intestinal/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/imunologia , Fagócitos/metabolismo , Linfócitos T/imunologia
15.
Cell Metab ; 29(6): 1376-1389.e4, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30930171

RESUMO

Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy.


Assuntos
Membrana Celular/metabolismo , Reprogramação Celular/fisiologia , Colesterol/metabolismo , Macrófagos/fisiologia , Neoplasias/patologia , Microambiente Tumoral , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Células da Medula Óssea/patologia , Células da Medula Óssea/fisiologia , Células Cultivadas , Progressão da Doença , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Neoplasias/metabolismo , Evasão Tumoral/fisiologia , Microambiente Tumoral/fisiologia
16.
Cell Rep ; 26(12): 3257-3271.e8, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893599

RESUMO

In the bone marrow, CXCL12 and IL-7 are essential for B cell differentiation, whereas hematopoietic stem cell (HSC) maintenance requires SCF and CXCL12. Peri-sinusoidal stromal (PSS) cells are the main source of IL-7, but their characterization as a pro-B cell niche remains limited. Here, we characterize pro-B cell supporting stromal cells and decipher the interaction network allowing pro-B cell retention. Preferential contacts are found between pro-B cells and PSS cells, which homogeneously express HSC and B cell niche genes. Furthermore, pro-B cells are frequently located in the vicinity of HSCs in the same niche. Using an interactome bioinformatics pipeline, we identify Nidogen-1 as essential for pro-B cell retention in the peri-sinusoidal niche as confirmed in Nidogen-1-/- mice. Finally, human pro-B cells and hematopoietic progenitors are observed close to similar IL-7+ stromal cells. Thus, a multispecific niche exists in mouse and human supporting both early progenitors and committed hematopoietic lineages.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Glicoproteínas de Membrana/imunologia , Células Precursoras de Linfócitos B/imunologia , Nicho de Células-Tronco/imunologia , Animais , Células-Tronco Hematopoéticas/citologia , Interleucina-7/genética , Interleucina-7/imunologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Células Precursoras de Linfócitos B/citologia , Células Estromais/citologia , Células Estromais/imunologia
17.
Front Immunol ; 10: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809220

RESUMO

Dendritic cells (DCs) are endowed with a unique potency to prime T cells, as well as to orchestrate their expansion, functional polarization and effector activity in non-lymphoid tissues or in their draining lymph nodes. The concept of harnessing DC immunogenicity to induce protective responses in cancer patients was put forward about 25 years ago and has led to a multitude of DC-based vaccine trials. However, until very recently, objective clinical responses were below expectations. Conventional type 1 DCs (cDC1) excel in the activation of cytotoxic lymphocytes including CD8+ T cells (CTLs), natural killer (NK) cells, and NKT cells, which are all critical effector cell types in antitumor immunity. Efforts to investigate whether cDC1 might orchestrate immune defenses against cancer are ongoing, thanks to the recent blossoming of tools allowing their manipulation in vivo. Here we are reporting on these studies. We discuss the mouse models used to genetically deplete or manipulate cDC1, and their main caveats. We present current knowledge on the role of cDC1 in the spontaneous immune rejection of tumors engrafted in syngeneic mouse recipients, as a surrogate model to cancer immunosurveillance, and how this process is promoted by type I interferon (IFN-I) effects on cDC1. We also discuss cDC1 implication in promoting the protective effects of immunotherapies in mouse preclinical models, especially for adoptive cell transfer (ACT) and immune checkpoint blockers (ICB). We elaborate on how to improve this process by in vivo reprogramming of certain cDC1 functions with off-the-shelf compounds. We also summarize and discuss basic research and clinical data supporting the hypothesis that the protective antitumor functions of cDC1 inferred from mouse preclinical models are conserved in humans. This analysis supports potential applicability to cancer patients of the cDC1-targeting adjuvant immunotherapies showing promising results in mouse models. Nonetheless, further investigations on cDC1 and their implications in anti-cancer mechanisms are needed to determine whether they are the missing key that will ultimately help switching cold tumors into therapeutically responsive hot tumors, and how precisely they mediate their protective effects.


Assuntos
Células Dendríticas/imunologia , Imunidade , Vigilância Imunológica , Neoplasias/imunologia , Animais , Células Apresentadoras de Antígenos , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Humanos , Hospedeiro Imunocomprometido , Imunoterapia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evasão Tumoral/imunologia
18.
Front Immunol ; 9: 2805, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564233

RESUMO

Type 1 conventional DCs (cDC1) excel in the cross-priming of CD8+ T cells, which is crucial for orchestrating efficient immune responses against viruses or tumors. However, our understanding of their physiological functions and molecular regulation has been limited by the lack of proper mutant mouse models allowing their conditional genetic targeting. Because the Xcr1 and A530099j19rik (Karma/Gpr141b) genes belong to the core transcriptomic fingerprint of mouse cDC1, we used them to engineer two novel Cre-driver lines, the Xcr1Cre and KarmaCre mice, by knocking in an IRES-Cre expression cassette into their 3'-UTR. We used genetic tracing to characterize the specificity and efficiency of these new models in several lymphoid and non-lymphoid tissues, and compared them to the Clec9aCre mouse model, which targets the immediate precursors of cDCs. Amongst the three Cre-driver mouse models examined, the Xcr1Cre model was the most efficient and specific for the fate mapping of all cDC1, regardless of the tissues examined. The KarmaCre model was rather specific for cDC1 when compared with the Clec9aCre mouse, but less efficient than the Xcr1Cre model. Unexpectedly, the Xcr1Cre model targeted a small fraction of CD4+ T cells, and the KarmaCre model a significant proportion of mast cells in the skin. Importantly, the targeting specificity of these two mouse models was not changed upon inflammation. A high frequency of germline recombination was observed solely in the Xcr1Cre mouse model when both the Cre and the floxed alleles were brought by the same gamete irrespective of its gender. Xcr1, Karma, and Clec9a being differentially expressed within the cDC1 population, the three CRE-driver lines examined showed distinct recombination patterns in cDC1 phenotypic subsets. This advances our understanding of cDC1 subset heterogeneity and the differentiation trajectory of these cells. Therefore, to the best of our knowledge, upon informed use, the Xcr1Cre and KarmaCre mouse models represent the best tools currently reported to specifically and faithfully target cDC1 in vivo, both at steady state and upon inflammation. Future use of these mutant mouse models will undoubtedly boost our understanding of the biology of cDC1.


Assuntos
Apresentação Cruzada/genética , Células Dendríticas/fisiologia , Receptores de Quimiocinas/genética , Regiões 3' não Traduzidas/genética , Animais , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Pele/fisiopatologia
19.
Cell Rep ; 24(7): 1902-1915.e6, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110645

RESUMO

The ability to generate large numbers of distinct types of human dendritic cells (DCs) in vitro is critical for accelerating our understanding of DC biology and harnessing them clinically. We developed a DC differentiation method from human CD34+ precursors leading to high yields of plasmacytoid DCs (pDCs) and both types of conventional DCs (cDC1s and cDC2s). The identity of the cells generated in vitro and their strong homology to their blood counterparts were demonstrated by phenotypic, functional, and single-cell RNA-sequencing analyses. This culture system revealed a critical role of Notch signaling and GM-CSF for promoting cDC1 generation. Moreover, we discovered a pre-terminal differentiation state for each DC type, characterized by high expression of cell-cycle genes and lack of XCR1 in the case of cDC1. Our culture system will greatly facilitate the simultaneous and comprehensive study of primary, otherwise rare human DC types, including their mutual interactions.


Assuntos
Linhagem da Célula/imunologia , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Receptor Notch1/genética , Antígenos CD34/genética , Antígenos CD34/imunologia , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Expressão Gênica , Perfilação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Imidazóis/farmacologia , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/imunologia , Poli I-C/farmacologia , Cultura Primária de Células , Receptor Notch1/imunologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais , Análise de Célula Única
20.
Elife ; 72018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29488879

RESUMO

Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.


Assuntos
Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Infecções por Citomegalovirus/imunologia , Proteínas de Ligação a DNA/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Fatores de Transcrição/metabolismo , Adulto , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA