Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ophthalmol Ther ; 13(6): 1427-1451, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630354

RESUMO

Chronic, non-communicable diseases present a major barrier to living a long and healthy life. In many cases, early diagnosis can facilitate prevention, monitoring, and treatment efforts, improving patient outcomes. There is therefore a critical need to make screening techniques as accessible, unintimidating, and cost-effective as possible. The association between ocular biomarkers and systemic health and disease (oculomics) presents an attractive opportunity for detection of systemic diseases, as ophthalmic techniques are often relatively low-cost, fast, and non-invasive. In this review, we highlight the key associations between structural biomarkers in the eye and the four globally leading causes of morbidity and mortality: cardiovascular disease, cancer, neurodegenerative disease, and metabolic disease. We observe that neurodegenerative disease is a particularly promising target for oculomics, with biomarkers detected in multiple ocular structures. Cardiovascular disease biomarkers are present in the choroid, retinal vasculature, and retinal nerve fiber layer, and metabolic disease biomarkers are present in the eyelid, tear fluid, lens, and retinal vasculature. In contrast, only the tear fluid emerged as a promising ocular target for the detection of cancer. The retina is a rich source of oculomics data, the analysis of which has been enhanced by artificial intelligence-based tools. Although not all biomarkers are disease-specific, limiting their current diagnostic utility, future oculomics research will likely benefit from combining data from various structures to improve specificity, as well as active design, development, and optimization of instruments that target specific disease signatures, thus facilitating differential diagnoses.


Long-term diseases can stop people living long and healthy lives. In many cases, early diagnosis can help to prevent, monitor, and treat disease, which can improve patients' health. In order to diagnose disease, we need tools that are easy for patients to access, painless, and low-cost. The eye may provide the solution. In this review, we discuss the link between changes in the eye and four types of long-term disease that, together, kill most of the population: (1) Cardiovascular disease (affecting the heart and/or blood). (2) Cancer (abnormal growth of cells). (3) Neurodegenerative disease (affecting the brain and/or nervous system). (4) Metabolic disease (problems storing, accessing, and using the body's fuel). We show that neurodegenerative disease leaves tell-tale signs in lots of different parts of the eye. Signs of cardiovascular and metabolic disease biomarkers are mostly found in the back of the eye, and signs of cancer can be found in the tear fluid. Although signs of disease can be seen in the eye, not all of them will tell us what the disease is. We believe that future research will help us to understand more about long-term disease and how to detect it if we combine information from different structures within the eye and develop new tools to target these specific structures.

2.
Eur J Pharm Sci ; 160: 105772, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621612

RESUMO

Understanding the intra-tumoral distribution of chemotherapeutic drugs is extremely important in predicting therapeutic outcome. Tissue mimicking gel phantoms are useful for studying drug distribution in vitro but quantifying distribution is laborious due to the need to section phantoms over the relevant time course and individually quantify drug elution. In this study we compare a bespoke version of the traditional phantom sectioning approach, with a novel confocal microscopy technique that enables dynamic in situ measurements of drug concentration. Release of doxorubicin from Drug-eluting Embolization Beads (DEBs) was measured in phantoms composed of alginate and agarose over comparable time intervals. Drug release from several different types of bead were measured. The non-radiopaque DC Bead™ generated a higher concentration at the boundary between the beads and the phantom and larger drug penetration distance within the release period, compared with the radiopaque DC Bead LUMI™. This is likely due to the difference of compositional and structural characteristics of the hydrogel beads interacting differently with the loaded drug. Comparison of in vitro results against historical in vivo data show good agreement in terms of drug penetration, when confounding factors such as geometry, elimination and bead chemistry were accounted for. Hence these methods have demonstrated potential for both bead and gel phantom validation, and provide opportunities for optimisation of bead design and embolization protocols through in vitro-in vivo comparison.


Assuntos
Quimioembolização Terapêutica , Portadores de Fármacos , Doxorrubicina , Liberação Controlada de Fármacos , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA