Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genome Biol ; 18(1): 28, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196534

RESUMO

BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.


Assuntos
Adaptação Biológica , Aspergillus/classificação , Aspergillus/genética , Biodiversidade , Genoma Fúngico , Genômica , Aspergillus/metabolismo , Biomassa , Carbono/metabolismo , Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Metilação de DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Família Multigênica , Oxirredutases/metabolismo , Filogenia , Plantas/metabolismo , Plantas/microbiologia , Metabolismo Secundário/genética , Transdução de Sinais , Estresse Fisiológico/genética
2.
Folia Microbiol (Praha) ; 58(6): 615-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23613286

RESUMO

A thermotolerant fungus identified as Aspergillus niveus was isolated from decomposing materials and it has produced excellent levels of hydrolytic enzymes that degrade plant cell walls. A. niveus germinated faster at 40 °C, presenting protein levels almost twofold higher than at 25 °C. The crude extract of the A. niveus culture was purified by diethylaminoethyl (DEAE)-cellulose, followed by Biogel P-100 column. Polygalacturonase (PG) is a glycoprotein with 37.7 % carbohydrate, molecular mass of 102.6 kDa, and isoelectric point of 5.4. The optimum temperature and pH were 50 °C and 4.0-6.5, respectively. The enzyme was stable at pH 3.0 to 9.0 for 24 h. The DEAE-cellulose derivative was about sixfold more stable at 60 °C than the free enzyme. Moreover, the monoaminoethyl-N-aminoethyl-agarose derivative was tenfold more stable than the free enzyme. PG was 232 % activated by Mn(2+). The hydrolysis product of sodium polypectate corresponded at monogalacturonic acid, which classifies the enzyme as an exo-PG. The K m, V max, K cat, and K cat/K m values were 6.7 mg/ml, 230 U/mg, 393.3/s, and 58.7 mg/ml/s, respectively. The N-terminal amino acid sequence presented 80 % identity with PglB1, PglA2, and PglA3 putative exo-PG of Aspergillus fumigatus and an exo-PG Neosartorya fischeri.


Assuntos
Aspergillus/enzimologia , Ativadores de Enzimas/metabolismo , Manganês/metabolismo , Poligalacturonase/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Análise por Conglomerados , Microbiologia Ambiental , Estabilidade Enzimática , Ácidos Hexurônicos/metabolismo , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Cinética , Peso Molecular , Filogenia , Poligalacturonase/química , Poligalacturonase/isolamento & purificação , Homologia de Sequência de Aminoácidos , Temperatura
3.
Braz. arch. biol. technol ; 54(1): 141-148, Jan.-Feb. 2011. graf, tab
Artigo em Inglês | LILACS | ID: lil-576770

RESUMO

Fungi collected from Brazilian soil and decomposing plants were screened for pectinase production. R. microsporus var. rhizopodiformis was the best producer and was selected to evaluate the pectic enzyme production under several nutritional and environmental conditions. The pectinase production was studied at 40ºC, under 28 carbon sources-supplemented medium. The inducer effect of several agro-industrial residues such as sugar cane bagasse, wheat flour and corncob on polygalacturonase (PG) activity was 4-, 3- and 2-fold higher than the control (pectin). In glucose-medium, a constitutive pectin lyase (PL) activity was detected. The results demonstrated that R. microsporus produced high levels of PG (57.7 U/mg) and PL (88.6 U/mg) in lemon peel-medium. PG had optimum temperature at 65 ºC and was totally stable at 55 ºC for 90 min. Half-life at 70 ºC was 68 min. These results suggested that the versatility of waste carbon sources utilization by R. microsporus, produce pectic enzymes, which could be useful to reduce production costs and environmental impacts related to the waste disposal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA