Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 375(6582): eabc4203, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175796

RESUMO

Adaptation to nutrient scarcity involves an orchestrated response of metabolic and signaling pathways to maintain homeostasis. We find that in the fat body of fasting Drosophila, lysosomal export of cystine coordinates remobilization of internal nutrient stores with reactivation of the growth regulator target of rapamycin complex 1 (TORC1). Mechanistically, cystine was reduced to cysteine and metabolized to acetyl-coenzyme A (acetyl-CoA) by promoting CoA metabolism. In turn, acetyl-CoA retained carbons from alternative amino acids in the form of tricarboxylic acid cycle intermediates and restricted the availability of building blocks required for growth. This process limited TORC1 reactivation to maintain autophagy and allowed animals to cope with starvation periods. We propose that cysteine metabolism mediates a communication between lysosomes and mitochondria, highlighting how changes in diet divert the fate of an amino acid into a growth suppressive program.


Assuntos
Cistina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Jejum , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , Acetilcoenzima A/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Animais , Autofagia , Ciclo do Ácido Cítrico , Cisteína/metabolismo , Cisteína/farmacologia , Citosol/metabolismo , Dieta com Restrição de Proteínas , Drosophila melanogaster/crescimento & desenvolvimento , Corpo Adiposo/fisiologia , Modelos Animais , Transdução de Sinais
2.
Environ Mol Mutagen ; 58(9): 662-677, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28940655

RESUMO

Regulatory in vitro genotoxicity testing exhibits shortcomings in specificity and mode of action (MoA) information. Thus, the aim of this work was to evaluate the performance of the novel MultiFlow® assay composed of mechanistic biomarkers quantified in TK6 cells after treatment (4 and 24 hr): γH2AX (DNA double strand breaks), phosphorylated H3 (mitotic cells), translocated p53 (genotoxicity), and cleaved PARP1 (apoptosis). A reference dataset of 31 compounds with well-established MoA was studied using the MicroFlow® micronucleus assay. A positive call was raised following the earlier published criteria from Litron Laboratories. In the light of our data, these evaluation criteria should probably be adjusted since only 8/11 (73%) nongenotoxicants and 18/20 (90%) genotoxicants were correctly identified. Moreover, there is a need for new in vitro tools to delineate the predominant MoA as in the MicroFlow® assay only 5/9 (56%) aneugens and 4/11 (36%) clastogens were correctly classified. In contrast, the MultiFlow® assay provides more in-depth information about the MoA and therefore reliably discriminates clastogens, aneugens, and nongenotoxicants. By using a lab-specific, practical threshold for the aforementioned biomarkers, 10/11 (91%) nongenotoxicants and 19/20 genotoxicants (95%), 9/11 (82%) clastogens, and 8/9 (89%) aneugens were correctly categorized, suggesting a clear improvement over the MicroFlow® . Furthermore, the MultiFlow markers were benchmarked against established methods to assess the validity of the data. Altogether, these findings demonstrated good agreement between the MultiFlow® assay and the benchmarking methods. Finally, p21 may improve class discrimination given the correct identification of 4/4 (100%) aneugens and 2/5 (40%) clastogens. Environ. Mol. Mutagen. 58:662-677, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Biomarcadores , Citometria de Fluxo/métodos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Animais , Apoptose/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Histonas/genética , Histonas/metabolismo , Humanos , Testes para Micronúcleos/métodos , Fosforilação , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA