Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 22(2): e59-e65, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34461057

RESUMO

Amoebic encephalitis is a rare cause of CNS infection for which mortality exceeds 90%. We present the case of a 27-year-old man with AIDS who presented to a hospital in Atlanta (Georgia, USA) with tonic-clonic seizures and headache. His clinical condition deteriorated over several days. Brain biopsy revealed lymphohistiocytic inflammation and necrosis with trophozoites and encysted forms of amoebae. Immunohistochemical and PCR testing confirmed Acanthamoeba castellanii encephalitis, typically described as granulomatous amoebic encephalitis (GAE). No proven therapy for GAE is available, although both surgical and multiagent antimicrobial treatment strategies are often used. Most recently, these include the antileishmanial agent miltefosine. Here we review all cases of GAE due to Acanthamoeba spp in people with HIV/AIDS identified in the literature and reported to the Centers for Disease Control and Prevention. We describe this case as a reminder to the clinician to consider protozoal infections, especially free-living amoeba, in the immunocompromised host with a CNS infection refractory to traditional antimicrobial therapy.


Assuntos
Acanthamoeba castellanii , Síndrome da Imunodeficiência Adquirida , Amebíase , Antiprotozoários , Encefalite , Adulto , Amebíase/diagnóstico , Amebíase/tratamento farmacológico , Antiprotozoários/uso terapêutico , Encefalite/diagnóstico , Encefalite/tratamento farmacológico , Granuloma , Humanos , Masculino
2.
ACS Nano ; 9(8): 7968-75, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26223158

RESUMO

Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we demonstrate an IR-compatible liquid cell architecture that enables near-field imaging and nanospectroscopy by taking advantage of the unique properties of graphene. Large-area graphene acts as an impermeable monolayer barrier that allows for nano-IR inspection of underlying molecular materials in liquid. Here, we use s-SNOM to investigate the tobacco mosaic virus (TMV) in water underneath graphene. We resolve individual virus particles and register the amide I and II bands of TMV at ca. 1520 and 1660 cm(-1), respectively, using nanoscale Fourier transform infrared spectroscopy (nano-FTIR). We verify the presence of water in the graphene liquid cell by identifying a spectral feature associated with water absorption at 1610 cm(-1).


Assuntos
Grafite/química , Nanotecnologia/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Nanotecnologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vírus do Mosaico do Tabaco/ultraestrutura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA