Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
MAbs ; 6(6): 1631-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484068

RESUMO

Delta-like-4 ligand (DLL4) plays an important role in vascular development and is widely expressed on the vasculature of normal and tumor tissues. Anti-DLL4 is a humanized IgG1 monoclonal antibody against DLL4. The purpose of these studies was to characterize the pharmacokinetics (PK), tissue distribution, and anti-tumor efficacy of anti-DLL4 in mice over a range of doses. PK and tissue distribution of anti-DLL4 were determined in athymic nude mice after administration of single intravenous (IV) doses. In the tissue distribution study, radiolabeled anti-DLL4 (mixture of (125)Iodide and (111)Indium) was administered in the presence of increasing amounts of unlabeled anti-DLL4. Dose ranging anti-DLL4 anti-tumor efficacy was evaluated in athymic nude mice bearing MV522 human lung tumor xenografts. Anti-DLL4 had nonlinear PK in mice with rapid serum clearance at low doses and slower clearance at higher doses suggesting the involvement of target mediated clearance. Consistent with the PK data, anti-DLL4 was shown to specifically distribute to several normal tissues known to express DLL4 including the lung and liver. Maximal efficacy in the xenograft model was seen at doses ≥ 10 mg/kg when tissue sinks were presumably saturated, consistent with the PK and tissue distribution profiles. These findings highlight the importance of mechanistic understanding of antibody disposition to enable dosing strategies for maximizing efficacy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/imunologia , Área Sob a Curva , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Radioisótopos de Índio/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Radioisótopos do Iodo/farmacocinética , Neoplasias Pulmonares/imunologia , Proteínas de Membrana/imunologia , Taxa de Depuração Metabólica , Camundongos Nus , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Clin Pharmacol ; 53(11): 1103-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23922054

RESUMO

Onartuzumab is a unique, humanized, monovalent (one-armed) monoclonal antibody (mAb) against the MET receptor. The intravenous (IV) pharmacokinetics (PK) of onartuzumab were investigated in a phase I study and a phase II study in recurrent non-small cell lung cancer (NSCLC) patients. The potential for drug-drug interaction (DDI) was assessed during co-administration of IV onartuzumab with oral erlotinib, by measuring the PK of both drugs. The concentration-time profiles of onartuzumab were adequately described using a two-compartment model with linear clearance (CL) at doses between 4 and 30 mg/kg. The estimates for CL, central compartment volume (V1 ), and median terminal half-life were 0.439 L/day, 2.77 L, and 13.4 days, respectively. Statistically significant covariates included creatinine clearance (CrCL) on clearance, weight and gender on V1 , and weight on peripheral compartment volume (V2 ), but the clinical relevance of these covariates needs to be further evaluated. The current analysis did not indicate obvious DDI between onartuzumab and erlotinib. MET diagnostic status did not impact the exposure of either agent. Despite the slightly faster clearance compared with typical bivalent mAbs, the PK of onartuzumab support dosing regimens of 15 mg/kg every 3 weeks or doses equivalent to achieve the target minimum tumoristatic concentration in patients.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antineoplásicos/farmacocinética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Interações Medicamentosas , Cloridrato de Erlotinib , Feminino , Humanos , Masculino , Modelos Biológicos , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinazolinas/administração & dosagem , Quinazolinas/farmacocinética
3.
Clin Cancer Res ; 19(16): 4433-45, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23812669

RESUMO

PURPOSE: Our goal was to develop a potent humanized antibody against mouse/human CXCL12. This report summarized its in vitro and in vivo activities. EXPERIMENTAL DESIGN: Cell surface binding and cell migration assays were used to select neutralizing hamster antibodies, followed by testing in several animal models. Monoclonal antibody (mAb) 30D8 was selected for humanization based on its in vitro and in vivo activities. RESULTS: 30D8, a hamster antibody against mouse and human CXCL12α, CXCL12ß, and CXCL12γ, was shown to dose-dependently block CXCL12α binding to CXCR4 and CXCR7, and CXCL12α-induced Jurkat cell migration in vitro. Inhibition of primary tumor growth and/or metastasis was observed in several models. 30D8 alone significantly ameliorated arthritis in a mouse collagen-induced arthritis model (CIA). Combination with a TNF-α antagonist was additive. In addition, 30D8 inhibited 50% of laser-induced choroidal neovascularization (CNV) in mice. Humanized 30D8 (hu30D8) showed similar in vitro and in vivo activities as the parental hamster antibody. A crystal structure of the hu30D8 Fab/CXCL12α complex in combination with mutational analysis revealed a "hot spot" around residues Asn(44)/Asn(45) of CXCL12α and part of the RFFESH region required for CXCL12α binding to CXCR4 and CXCR7. Finally, hu30D8 exhibited fast clearance in cynomolgus monkeys but not in rats. CONCLUSION: CXCL12 is an attractive target for treatment of cancer and inflammation-related diseases; hu30D8 is suitable for testing this hypothesis in humans.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Quimiocina CXCL12/antagonistas & inibidores , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/química , Quimiocina CXCL12/metabolismo , Cricetinae , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Modelos Moleculares , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Conformação Proteica , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 19(18): 5068-78, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23894056

RESUMO

PURPOSE: We characterized the pharmacokinetics of onartuzumab (MetMAb) in animals and determined a concentration-effect relationship in tumor-bearing mice to enable estimation of clinical pharmacokinetics and target doses. EXPERIMENTAL DESIGN: A tumor growth inhibition model was used to estimate tumoristatic concentrations (TSC) in mice. Human pharmacokinetic parameters were projected from pharmacokinetics in cynomolgus monkeys by the species-invariant time method. Monte Carlo simulations predicted the percentage of patients achieving steady-state trough serum concentrations (Ctrough ss) ≥TSC for every 3-week (Q3W) dosing. RESULTS: Onartuzumab clearance (CL) in the linear dose range was 21.1 and 12.2 mL/d/kg in mice and cynomolgus monkeys with elimination half-life at 6.10 and 3.37 days, respectively. The estimated TSC in KP4 pancreatic xenograft tumor-bearing mice was 15 µg/mL. Projected CL for humans in the linear dose range was 5.74 to 9.36 mL/d/kg with scaling exponents of CL at 0.75 to 0.9. Monte Carlo simulations projected a Q3W dose of 10 to 30 mg/kg to achieve Ctrough ss of 15 µg/mL in 95% or more of patients. CONCLUSIONS: Onartuzumab pharmacokinetics differed from typical bivalent glycosylated monoclonal antibodies with approximately 2-times faster CL in the linear dose range. Despite this higher CL, xenograft efficacy data supported dose flexibility with Q1W to Q3W dose regimens in the clinical setting with a TSC of 15 µg/mL as the Ctrough ss target. The projected human efficacious dose of 10 to 30 mg/kg Q3W should achieve the target TSC of 15 µg/mL. These data show effective pharmacokinetic/pharmacodynamic modeling to project doses to be tested in the clinic.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Western Blotting , Carcinoma Ductal Pancreático/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Macaca fascicularis , Camundongos , Camundongos Nus , Método de Monte Carlo , Neoplasias Pancreáticas/metabolismo , Valor Preditivo dos Testes , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Chemother Pharmacol ; 72(2): 405-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771513

RESUMO

PURPOSE: PRO95780, a human monoclonal antibody (mAb) against death receptor 5 (DR5/TRAIL-R2/TNFRSF10B), was developed for the treatment for cancer. Our objective was to characterize pharmacokinetics (PK) in mice, rats, and cynomolgus monkeys and concentration-effect relationships of PRO95780 in xenograft mouse models of human cancers; this would guide the selection of dose and regimen for clinical trials. METHODS: The PK profiles were determined in mice, rats, and cynomolgus monkeys. Three xenograft models with a wide range of in vitro sensitivities to PRO95780 were selected for efficacy studies. Tumoristatic serum concentrations (TSCs) were determined using PK/pharmacodynamic (PD) modeling with tumor growth as a PD endpoint. A species-invariant time PK scaling method was employed to estimate disposition in humans using PK data in cynomolgus monkeys. Furthermore, the predicted human PK parameters were used to estimate dose and regimen to achieve TSC observed in mice at the steady-state trough concentrations (C trough ss) in the clinic. RESULTS: Linear PK was observed across species. A serum concentration of 22 µg/mL was identified to be the target TSC in mice. A dose of 10 mg/kg administered once every 2 weeks (Q2W) was predicted to achieve a TSC at C trough ss in 95 % of patients. CONCLUSIONS: PRO95780 has linear PK in mice, rats, and monkeys. Estimated TSCs varied among different xenograft models. A projected target dose in humans is achievable for Q2W administration within the dose range used for other commercial mAbs.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Animais , Anticorpos Monoclonais Humanizados , Área Sob a Curva , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Meia-Vida , Humanos , Injeções Intravenosas , Macaca fascicularis , Camundongos , Camundongos Nus , Modelos Estatísticos , Transplante de Neoplasias , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Pharm Res ; 29(9): 2512-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22707361

RESUMO

PURPOSE: To compare the pharmacokinetics (PK) of MNRP1685A, a human monoclonal antibody (mAb) against neuropilin-1 (NRP1), in mice, rats, monkeys, and cancer patients from a Phase I study to model with parallel linear and nonlinear clearances. METHODS: Binding characteristics of MNRP1685A in different species were evaluated using surface plasmon resonance technology. PK profiles of MNRP1685A after single and/or multiple doses in different species were analyzed using population analysis. PK parameters were compared across species. RESULTS: MNRP1685A binds to NRP1 in all four species tested. Consistent with the wide expression of NRP1, MNRP1685A demonstrated pronounced non-linear PK over a wide dose range. PK profiles are best described by a two-compartment model with parallel linear and nonlinear clearances. Model-derived PK parameters suggest similar in-vivo target expression levels and binding affinity to target across all species tested. However, compared to typical human/humanized mAbs, non-specific clearance of MNRP1685A was faster in mice, rats, and humans (60.3, 19.4, and 8.5 ml/day/kg), but not in monkeys (3.22 ml/day/kg). CONCLUSIONS: Monkey PK properly predicted the target-mediated clearance of MNRP1685A but underestimated its non-specific clearance in humans. This unique PK property warrants further investigation of underlying mechanisms.


Assuntos
Anticorpos Monoclonais/farmacocinética , Neuropilina-1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Humanos , Modelos Biológicos , Especificidade da Espécie
7.
Cancer Chemother Pharmacol ; 69(4): 1063-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22203367

RESUMO

PURPOSE: MEHD7945A is a novel dual-action monoclonal antibody in which each of the two antigen-binding fragments is capable of binding to EGFR and HER3 with high affinity. It is being evaluated as a potential therapy for human cancer. The purpose of these studies was to characterize the pharmacokinetics (PK) of MEHD7945A in mouse and monkey and predict its human PK and efficacious dose. METHODS: PK of MEHD7945A was determined in SCID beige mice and cynomolgus monkeys after administration of single intravenous doses. Human PK profiles were projected from monkey PK profiles using a species-invariant time method, and human population PK parameters were estimated using a nonlinear, two-compartment model comprising specific (target-mediated) and nonspecific clearance pathways. The antitumor efficacy in mice bearing human tumor xenografts was used in conjunction with human PK projections to estimate human efficacious doses. RESULTS: The total clearance of MEHD7945A decreased with increase in dose in both mouse and monkey. The nonspecific clearance in monkey was estimated to be 14 mL/day/kg. The predicted nonspecific clearance range in humans was 6-10 mL/day/kg. Doses of 8-12 mg/kg administered every 2 weeks in humans were predicted to achieve exposure of 300 day µg/mL per week to match the efficacious exposure observed in xenograft models. CONCLUSIONS: The PK of MEHD7945A was nonlinear in mouse and monkey in the dose range tested. The nonspecific clearance in monkey was approximately twofold higher than typical humanized IgG1 antibodies. The projected human efficacious dose and dose regimen appear to be achievable in patients.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antineoplásicos/farmacocinética , Receptores ErbB/imunologia , Imunoglobulina G/metabolismo , Receptor ErbB-3/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/imunologia , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Macaca fascicularis , Camundongos , Camundongos SCID , Receptor ErbB-3/metabolismo
8.
Cancer Chemother Pharmacol ; 69(4): 1071-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22203368

RESUMO

PURPOSE: MFGR1877A is a human IgG1 monoclonal antibody that binds to fibroblast growth factor receptor 3 (FGFR3) and is being investigated as a potential therapy for relapsed/refractory FGFR3+ multiple myeloma. The purpose of these studies was to characterize the pharmacokinetics (PK) of MFGR1877A in mouse, rat, and monkey and predict its human PK and efficacious dose. METHODS: PK of MFGR1877A was determined in athymic nude mice, Sprague-Dawley rats and cynomolgus monkeys after administration of single intravenous doses. Human PK profiles were projected from monkey PK profiles using a species-invariant time method, and human population PK parameters were estimated using a non-linear, two-compartment model comprising specific (target-mediated) and non-specific clearance pathways. The anti-tumor efficacy in mice bearing human tumor xenografts was used in conjunction with inhibitory activity in cell proliferation assays and human PK projections to estimate clinical efficacious dose. RESULTS: The PK of MFGR1877A in mice was non-linear in the dose range of 1-50 mg/kg, while in rats and monkeys, PK was non-linear in the dose range of 1-10 mg/kg and linear at doses ≥ 10 mg/kg. The predicted non-specific clearance range in humans was 2.6-4.4 mL/day/kg. Doses ranging from 2 to 3 mg/kg weekly to 6-10 mg/kg every 4 weeks were predicted to achieve the target exposure in ≥ 90% of multiple myeloma patients. CONCLUSIONS: The predicted non-specific clearance of MFGR1877A in humans is similar to typical human IgG1 antibodies and will be verified in a Phase 1 study. The projected human efficacious dose and regimen appear to be achievable in patients.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacocinética , Mieloma Múltiplo/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Macaca fascicularis , Camundongos , Camundongos Nus , Mieloma Múltiplo/tratamento farmacológico , Dinâmica não Linear , Ratos , Ratos Sprague-Dawley , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA