Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 20(2): 120-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278042

RESUMO

BACKGROUND: Alzheimer's disease (AD) and Multiple sclerosis (MS) lead to neurodegenerative processes negatively affecting millions of people worldwide. Their treatment is still difficult and practically incomplete. One of the most commonly used drugs against these neurodegenerative diseases is 4-aminopyridine. However, its use is confined by the high toxicity. OBJECTIVES: The aim of this work is to obtain new peptide derivatives of 4-aminopyridine with decreased toxicity compared to 4-aminopyridine. METHODS: Synthesis was conducted in solution using a consecutive condensation approach. The new derivatives were characterized by melting points, NMR, and Mass spectra. Important ADME (absorption, distribution, metabolism, and excretion) properties have been studied in silico using ACD/Percepta v.2020.2.0 software. Acute toxicity was determined in mice according to a Standard protocol. All new derivatives were tested in vitro for cytotoxic activity in a panel of human (HEP-G2, BV-173) and murine (NEURO 2A) tumor cell lines via a standard MTT-based colorimetric method. ß-secretase inhibitory activity was determined by applying the fluorescent method. RESULTS: New derivatives of 4-aminopyridine containing analogues of the ß-secretase inhibitory peptide (Boc-Val-Asn-Leu-Ala-OH) were obtained. The in vivo toxicity of the tested compounds was found to be as high as 1500 mg/kg. Cell toxicity screening against tumor cell lines of different origins showed negligible growth-inhibitory effects of all investigated 4-aminopyridine analogues. CONCLUSION: Synthesis of new peptide derivatives of 4-aminopyridine is reported. Acute toxicity studies revealed a ca. 150 times lower toxicity of the new compounds as compared to 4-aminopyridine that may be ascribed to their peptide fragment.


Assuntos
4-Aminopiridina , Doença de Alzheimer , Camundongos , Humanos , Animais , 4-Aminopiridina/toxicidade , 4-Aminopiridina/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos/farmacologia , Linhagem Celular Tumoral
2.
Curr Alzheimer Res ; 16(3): 183-192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30819081

RESUMO

BACKGROUND: Although no effective treatment for the Alzheimer's disease currently exist, some drugs acting as Acetylcholinesterase inhibitors, like galanthamine have positively affected such patients. ß- and/or γ-secretase inhibitors are another type of potential drugs. Here we report synthesis of new peptide-galanthamine derivatives, with expected inhibitory activity against both Acetylcholinesterase and ß-secretase. OBJECTIVES: The aim of this work is obtaining new peptide derivatives of galanthamine with decreased toxicity compared to galanthamine. METHODS: Syntheses were conducted in solution using fragment condensation approach. The new derivatives were characterized by melting points, angle of optical rotation, NMR and Mass spectra. Acute toxicity was determined on mice, according to a Standard protocol. All new compounds were tested in vitro for cytotoxic activity in a panel of human (HEP-G2, BV-173) and murine (Neuro-2a) tumor cell lines via a standard MTT-based colorimetric method. RESULTS: New derivatives of galanthamine containing shortened analogues of ß-secretase inhibitor (Boc- Asn-Leu-Ala-Val-OH) and either nicotinic or isonicotinic residue, both connected with a linker (L-Asp) to position 11 of galanthamine were obtained. In vivo toxicity of some new compounds was found up to 1000 mg/kg. Cell toxicity screening against the tumor cell lines showed negligible growth-inhibiting properties of the galanthamine derivatives. CONCLUSION: Synthesis of new galanthamine derivatives comprising peptide moiety and nicotinic acid or isonicotinic acid is reported. Acute toxicity studies reveal they are about 100 times less toxic than galanthamine. This effect is due to the peptide fragment. Cytotoxicity studies show good correlation with low toxicity results. These results are encouraging for the application of this class compounds as medicines.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Galantamina/análogos & derivados , Peptídeos/síntese química , Peptídeos/farmacologia , Doença de Alzheimer/prevenção & controle , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Galantamina/química , Galantamina/toxicidade , Humanos , Camundongos , Peptídeos/química , Peptídeos/toxicidade
3.
Protein Pept Lett ; 22(10): 913-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26129719

RESUMO

New derivatives of galanthamine containing peptide fragments with ß-secretase inhibitor activity were synthesized. In position 6 of the galanthamine new shortened analogues of ß-secretase inhibitor OM 99-2 (Boc-Val-Asn-Leu-Ala-OH and Boc-Val-Asn-Leu-Ala-Val-OH) were included. The new derivatives of the galanthamine in position 11 including Boc and norgalanthamine in P3 or P4 positions, Val in P2' position and benzylamin in P3'-position were also synthesized. All new peptides were investigated on mice for acute toxicity. The test compounds were administered to mice via intraperitoneal (i.p.) route. They have low toxicity (LD50>1000 mg/kg) after i.p. The compound 11-N-demethyl-11-N-N-[Boc-Asp(Asp-Leu-Ala-Val-NH-Bzl)]-Galanthamine was investigated by two way active avoidance method. The compound has good influence on the conditioned reflexes, which improved the processes of learning and memory. Inhibition activity of newly synthesized compounds was monitored against BuChE and IC50 values are determined. All compounds show activity in micromolar concentration. Compounds 5 and 6 have around 10 times higher activity than galanthamine. Compounds 4 and 9 also show good activity. All newly synthesized compounds show low acute toxicity.


Assuntos
Doença de Alzheimer/prevenção & controle , Galantamina/química , Galantamina/síntese química , Peptídeos/química , Peptídeos/síntese química , Animais , Galantamina/uso terapêutico , Humanos , Camundongos , Peptídeos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA