Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am Surg ; 89(5): 1457-1460, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-33861672

RESUMO

BACKGROUND: To describe the effect of the COVID-19 pandemic on emergency general surgery operative volumes during governmental shutdowns secondary to the pandemic and characterize differences in disease severity, morbidity, and mortality during this time compared to previous years. METHODS: This retrospective cohort study compares patients who underwent emergency general surgery operations at a tertiary hospital from March 1st to May 31st of 2020 to 2019. Average emergent cases per day were analyzed, comparing identical date ranges between 2020 (pandemic group) and 2019 (control group). Secondary analysis was performed analyzing disease severity, morbidity, and mortality. RESULTS: From March 1st to May 31st, 2020, 2.5 emergency general surgery operations were performed on average daily compared to 3.0 operations on average daily in 2019, a significant decrease (P = .03). No significant difference was found in presenting disease severity, morbidity, or mortality between the pandemic and control groups. DISCUSSION: This study demonstrates a decrease of 65% in emergency general surgery operations during governmental restrictions secondary to the COVID-19 pandemic. This decrease in operations was not associated with worse disease severity, morbidity, or mortality.


Assuntos
COVID-19 , Cirurgia Geral , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , Pandemias
2.
J Alzheimers Dis ; 91(1): 245-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36373322

RESUMO

BACKGROUND: Macrophages of healthy subjects have a pro-resolution phenotype, upload amyloid-ß (Aß) into endosomes, and degrade Aß, whereas macrophages of patients with Alzheimer's disease (AD) generally have a pro-inflammatory phenotype and lack energy for brain clearance of Aß. OBJECTIVE: To clarify the pathogenesis of sporadic AD and therapeutic effects of polyunsaturated fatty acids (PUFA) with vitamins B and D and antioxidants on monocyte/macrophage (MM) migration in the AD brain, MM transcripts in energy and Aß degradation, MM glycome, and macrophage clearance of Aß. METHODS: We followed for 31.3 months (mean) ten PUFA-supplemented neurodegenerative patients: 3 with subjective cognitive impairment (SCI), 2 with mild cognitive impairment (MCI), 3 MCI/vascular cognitive impairment, 2 with dementia with Lewy bodies, and 7 non-supplemented caregivers. We examined: monocyte migration in the brain and a blood-brain barrier model by immunochemistry and electron microscopy; macrophage transcriptome by RNAseq; macrophage glycome by N-glycan profiling and LTQ-Orbitrap mass spectrometry; and macrophage phenotype and phagocytosis by immunofluorescence. RESULTS: MM invade Aß plaques, upload but do not degrade Aß, and release Aß into vessels, which develop cerebrovascular amyloid angiopathy (CAA); PUFA upregulate energy and Aß degradation enzyme transcripts in macrophages; PUFA enhance sialylated N-glycans in macrophages; PUFA reduce oxidative stress and increase pro-resolution MM phenotype, mitochondrial membrane potential, and Aß phagocytosis (p < 0.001). CONCLUSION: Macrophages of SCI, MCI, and AD patients have interrelated defects in the transcriptome, glycome, Aß phagocytosis, and Aß degradation. PUFA mend macrophage transcriptome, enrich glycome, enhance Aß clearance, and benefit the cognition of early-stage AD patients.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/patologia , Transcriptoma , Macrófagos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Fenótipo
3.
Mol Neurobiol ; 58(1): 21-33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32889654

RESUMO

Alteration in cellular prion protein (PrPC) localization on the cell surface through mediation of the glycosylphosphatidylinositol (GPI) anchor has been reported to dramatically affect the formation and infectivity of its pathological isoform (PrPSc). A patient with Gerstmann-Sträussler-Scheinker (GSS) syndrome was previously found to have a nonsense heterozygous PrP-Q227X mutation resulting in an anchorless PrP. However, the allelic origin of this anchorless PrPSc and cellular trafficking of PrPQ227X remain to be determined. Here, we show that PrPSc in the brain of this GSS patient is mainly composed of the mutant but not wild-type PrP (PrPWt), suggesting pathological PrPQ227X is incapable of recruiting PrPWt in vivo. This mutant anchorless protein, however, is able to recruit PrPWt from humanized transgenic mouse brain but not from autopsied human brain homogenates to produce a protease-resistant PrPSc-like form in vitro by protein misfolding cyclic amplification (PMCA). To further investigate the characteristics of this mutation, constructs expressing human PrPQ227X or PrPWt were transfected into neuroblastoma cells (M17). Fractionation of the M17 cells demonstrated that most PrPWt is recovered in the cell lysate fraction, while most of the mutant PrPQ227X is recovered in the medium fraction, consistent with the results obtained by immunofluorescence microscopy. Two-dimensional gel-electrophoresis and Western blotting showed that cellular PrPQ227X spots clustered at molecular weights of 22-25 kDa with an isoelectric point (pI) of 3.5-5.5, whereas protein spots from the medium are at 18-26 kDa with a pI of 7-10. Our findings suggest that the role of GPI anchor in prion propagation between the anchorless mutant PrP and wild-type PrP relies on the cellular distribution of the protein.


Assuntos
Códon sem Sentido/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Príons/genética , Adulto , Animais , Anticorpos/metabolismo , Autopsia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Centrifugação com Gradiente de Concentração , Feminino , Glicosilação , Humanos , Camundongos Transgênicos , Príons/química , Agregados Proteicos , Dobramento de Proteína
4.
FASEB J ; 34(8): 9982-9994, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32614485

RESUMO

Sporadic late-onset Alzheimer disease (LOAD) preceded by mild cognitive impairment (MCI) is the most common type of dementia. Long-term studies of immunity to pathogenic amyloid-ß (Aß) in LOAD are lacking. Innate immunity of LOAD patients is malfunctioning in phagocytosis and degradation of Aß and LOAD patients' macrophage transcriptome and metabolome are deregulated. We previously showed omega-3 fatty acid (ω-3)-mediated repair of unfolded protein response and here we show much broader transcriptomic effects. ω-3 treatment in vitro and ω-3 supplementation by the drink Smartfish (SMF) in vivo increased the transcripts of the genes and pathways of immunity, glycolysis, tricarboxylic acid cycle, OX-PHOS, nicotinamide dinucleotide (NAD+ ) synthesis, and reversed the defects in Aß phagocytosis. In both peripheral blood mononuclear cells (PBMC) and macrophages, ω-3 increased ATP-linked oxygen consumption rate (OCR) and ω-3 with carnitine was superior to ω-3. ω-3 treatment in vitro and supplementation by the ω-3 drink SMF in vivo rescued macrophage phagocytosis when glycolysis or glycosylation were blocked. ω-3 provide flexible energy for immune clearance of the brain throughout the diurnal cycle, even in hypo- or hyper-glycemia. In certain LOAD patients, ω-3 may delay progression to dementia.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fosforilação Oxidativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/imunologia , Fagocitose , Transcriptoma/efeitos dos fármacos
5.
J Alzheimers Dis ; 75(3): 993-1002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390637

RESUMO

BACKGROUND: The cholinesterase inhibitor therapeutics (CI) approved for use in Alzheimer's disease (AD) are palliative for a limited time. OBJECTIVE: To examine the outcome of AD patients with add-on therapy of the omega-3 fatty acid drink Smartfish. METHODS: We performed a prospective study using Mini-Mental State Examination, amyloid-ß (Aß) phagocytosis blood assay, and RNA-seq of peripheral blood mononuclear cells in 28 neurodegenerative patients who had failed their therapies, including 8 subjective cognitive impairment (SCI), 8 mild cognitive impairment (MCI), 2 AD dementia, 1 frontotemporal dementia (FTD), 2 vascular cognitive impairment, and 3 dementia with Lewy bodies (DLB) patients. RESULTS: MCI, FTD, and DLB patients patients volunteered for the addition of a ω-3 fatty acid drink Smartfish protected by anti-oxidants to failing CI therapy. On this therapy, all MCI patients improved in the first year energy transcripts, Aß phagocytosis, cognition, and activities of daily living; in the long term, they remained in MCI status two to 4.5 years. All FTD and DLB patients rapidly progressed to dementia. On in vivo or in vitroω-3 treatments, peripheral blood mononuclear cells of MCI patients upregulated energy enzymes for glycolysis and citric acid cycle, as well as the anti-inflammatory circadian genes CLOCK and ARNTL2. CONCLUSION: Add-on ω-3 therapy to CI may delay dementia in certain patients who had failed single CI therapy.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/imunologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/imunologia , Ritmo Circadiano/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Fagocitose/efeitos dos fármacos , Estudos Prospectivos
6.
Nat Commun ; 10(1): 247, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651538

RESUMO

A definitive pre-mortem diagnosis of prion disease depends on brain biopsy for prion detection currently and no validated alternative preclinical diagnostic tests have been reported to date. To determine the feasibility of using skin for preclinical diagnosis, here we report ultrasensitive serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays of skin samples from hamsters and humanized transgenic mice (Tg40h) at different time points after intracerebral inoculation with 263K and sCJDMM1 prions, respectively. sPMCA detects skin PrPSc as early as 2 weeks post inoculation (wpi) in hamsters and 4 wpi in Tg40h mice; RT-QuIC assay reveals earliest skin prion-seeding activity at 3 wpi in hamsters and 20 wpi in Tg40h mice. Unlike 263K-inoculated animals, mock-inoculated animals show detectable skin/brain PrPSc only after long cohabitation periods with scrapie-infected animals. Our study provides the proof-of-concept evidence that skin prions could be a biomarker for preclinical diagnosis of prion disease.


Assuntos
Bioensaio/métodos , Proteínas PrPSc/análise , Scrapie/diagnóstico , Pele/patologia , Animais , Anticorpos Monoclonais/imunologia , Biomarcadores/análise , Encéfalo/patologia , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Humanos , Mesocricetus , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/imunologia , Proteínas PrPSc/patogenicidade , Scrapie/patologia
7.
FASEB J ; 31(10): 4359-4369, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28634213

RESUMO

Macrophages (Mϕs) of patients with Alzheimer's disease and mild cognitive impairment (MCI) are defective in amyloid-ß1-42 (Aß) phagocytosis and have low resistance to apoptosis by Aß. Omega-3 fatty acids (ω-3s) in vitro and in vivo and the ω-3 mediator, resolvin D1, in vitro increase Aß phagocytosis by Mϕs of patients with MCI. We have investigated the unfolded protein response (UPR) to endoplasmic reticulum (ER) stress by Mϕs in a longitudinal study of fish-derived, ω-3-supplemented patients with MCI. Patients in the apolipoprotein E (ApoE)e3/e3 subgroup over time exhibited an increase of protein kinase RNA-like ER kinase (PERK) expression, Aß phagocytosis, intermediate M1-M2 Mϕ type, and a Mini-Mental State Examination (MMSE) rate of change of +1.8 points per year, whereas patients in the ApoEe3/e4 subgroup showed individually divergent results with an MMSE rate of change of -3.2 points per year. In vitro treatment of Mϕs by fish-derived ω-3 emulsion increased Aß phagocytosis, PERK expression, and UPR RNA signature, and decreased ER stress signature. Augmented genes in the UPR signature included chaperones, lectins, foldases, and N-linked glycosylation enzymes. In summary, fish-derived ω-3s increase cytoprotective genes and decrease proapoptotic genes, improve immune clearance of Aß, and are associated with an improved MMSE rate of change in ApoEe3/e3 vs. ApoEe3/e4 patients.-Olivera-Perez, H. M., Lam, L., Dang, J., Jiang, W., Rodriguez, F., Rigali, E., Weitzman, S., Porter, V., Rubbi, L., Morselli, M., Pellegrini, M., Fiala, M. Omega-3 fatty acids increase the unfolded protein response and improve amyloid-ß phagocytosis by macrophages of patients with mild cognitive impairment.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Macrófagos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Fagocitose/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ácidos Graxos Ômega-3/metabolismo , Humanos , Macrófagos/metabolismo , Desdobramento de Proteína
8.
Nurs Clin North Am ; 52(2): 309-320, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28478879

RESUMO

Tumor lysis syndrome (TLS) is a life-threatening disorder that is an oncologic emergency. Risk factors for TLS are well-known, but the current literature shows case descriptions of unexpected acute TLS. Solid tumors and untreated hematologic tumors can lyse under various circumstances in children and adults. International guidelines and recommendations, including the early involvement of the critical care team, have been put forward to help clinicians properly manage the syndrome. Advanced practice nurses may be in the position of triaging and initiating treatment of patients with TLS, and need a thorough understanding of the syndrome and its treatment.


Assuntos
Hiperfosfatemia/diagnóstico , Hiperfosfatemia/fisiopatologia , Hiperuricemia/fisiopatologia , Enfermagem Oncológica/normas , Síndrome de Lise Tumoral/diagnóstico , Síndrome de Lise Tumoral/fisiopatologia , Desequilíbrio Hidroeletrolítico/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Hiperfosfatemia/enfermagem , Hiperuricemia/diagnóstico , Hiperuricemia/enfermagem , Lactente , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Fatores de Risco , Síndrome de Lise Tumoral/enfermagem , Desequilíbrio Hidroeletrolítico/diagnóstico , Desequilíbrio Hidroeletrolítico/enfermagem , Adulto Jovem
9.
FASEB J ; 31(1): 148-160, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677546

RESUMO

Monocyte/macrophages of patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) are defective in phagocytosis and degradation amyloid ß1-42 (Aß1-42), but are improved by ω-3 fatty acids (ω-3s). The hypothesis of this study was that active Aß1-42 phagocytosis by macrophages prevents brain amyloidosis and thus maintains cognition. We studied the effects of self-supplementation with a drink with ω-3s, antioxidants, and resveratrol on Mini-Mental State Examination (MMSE) scores, macrophage M1M2 phenotype [the ratio of inflammatory cluster of differentiation (CD)54+CD80 and proresolution markers CD163+CD206], and Aß1-42 phagocytosis in patients initially diagnosed as having MCI or subjective cognitive impairment (SCI). At baseline, the median MMSE score in patients in both the apolipoprotein E (ApoE) ε3/ε3 and ApoE ε3/ε4 groups was 26.0 and macrophage Aß1-42 phagocytosis was defective. The MMSE rate of change increased in the ApoE ε3/ε3 group a median 2.2 points per year (P = 0.015 compared to 0) but did not change in the ApoE ε3/ε4 group (P = 0.014 between groups). In the ApoE ε3/ε3 group, all patients remained cognitively stable or improved; in the ApoE ε3/ε4 group, 1 recovered from dementia, but 3 lapsed into dementia. The macrophage phenotype polarized in patients bearing ApoE ε3/ε3 to an intermediate (green zone) M1-M2 type at the rate of 0.226 U/yr, whereas in patients bearing ApoE ε3/ε4, polarization was negative (P = 0.08 between groups). The baseline M1M2 type in the extreme M1 (red zone) or M2 (white zone) was unfavorable for cognitive outcome. Aß1-42 phagocytosis increased in both ApoE groups (P = 0.03 in each groups). In vitro, the lipidic mediator resolvin D1 (RvD1) down regulated the M1 type in patients with ApoE ε3/ε3 but in some patients with ε3/ε4, paradoxically up-regulated the M1 type. Antioxidant/ω-3/resveratrol supplementation was associated with favorable immune and cognitive responses in ApoE ε3/ε3 and individual patients bearing ApoE ε3/ε4, and brings into personalized clinical practice the immune benefits expected from ω-3 mediators called resolvins. The validity of this study is limited by its small size and uncontrolled design.-Famenini, S., Rigali, E. A., Olivera-Perez, H. M., Dang, J., Chang, M T., Halder, R., Rao, R. V., Pellegrini, M., Porter, V., Bredesen, D., Fiala, M. Increased intermediate M1-M2 macrophage polarization and improved cognition in mild cognitive impairment patients on ω-3 supplementation.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Macrófagos/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/sangue , Apolipoproteínas E/classificação , Apolipoproteínas E/metabolismo , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Humanos , Macrófagos/fisiologia , Masculino , Pessoa de Meia-Idade
10.
Aging (Albany NY) ; 8(12): 3419-3429, 2016 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-27959866

RESUMO

Prions are infectious proteins that cause a group of fatal transmissible diseases in animals and humans. The scrapie isoform (PrPSc) of the cellular prion protein (PrPC) is the only known component of the prion. Several lines of evidence have suggested that the formation and molecular features of PrPSc are associated with an abnormal unfolding/refolding process. Quiescin-sulfhydryl oxidase (QSOX) plays a role in protein folding by introducing disulfides into unfolded reduced proteins. Here we report that QSOX inhibits human prion propagation in protein misfolding cyclic amplification reactions and murine prion propagation in scrapie-infected neuroblastoma cells. Moreover, QSOX preferentially binds PrPSc from prion-infected human or animal brains, but not PrPC from uninfected brains. Surface plasmon resonance of the recombinant mouse PrP (moPrP) demonstrates that the affinity of QSOX for monomer is significantly lower than that for octamer (312 nM vs 1.7 nM). QSOX exhibits much lower affinity for N-terminally truncated moPrP (PrP89-230) than for the full-length moPrP (PrP23-231) (312 nM vs 2 nM), suggesting that the N-terminal region of PrP is critical for the interaction of PrP with QSOX. Our study indicates that QSOX may play a role in prion formation, which may open new therapeutic avenues for treating prion diseases.


Assuntos
Encéfalo/metabolismo , Oxirredutases/metabolismo , Príons/metabolismo , Scrapie/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neuroblastoma/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA