Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 241: 117653, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980982

RESUMO

When confronted with wastewater that is characterized by complex composition, stable molecular structure, and high concentration, relying solely on photocatalytic technology proves inadequate in achieving satisfactory degradation results. Therefore, the integration of other highly efficient degradation techniques has emerged as a viable approach to address this challenge. Herein, a novel strategy was employed whereby the exfoliated g-C3N4 nanosheets (CNs) with exceptional photocatalytic performance, were intimately combined with porous rod-shaped cobalt ferrite (CFO) through a co-calcination process to form the composite CFO/CNs, which exhibited remarkable efficacy in the degradation of various organic pollutants through the combination of photocatalysis and Fenton-like process synergistically, exemplified by the representative case of tetracycline hydrochloride (TCH, 200 mL, 50 mg/L). Specifically, under 1 mM of peroxymonosulfate (PMS) and illumination conditions, 50 mg of 1CFO/9CNs achieved a TCH removal ratio of ∼90% after 60 min of treatment. Furthermore, this work comprehensively investigated the influence of various factors, including catalyst and PMS dosages, solution pH, and the presence of anions and humate, on the degradation efficiency of pollutants. Besides, quenching experiments and EPR tests confirmed the establishment of an S-scheme heterojunction between CNs and CFO, which facilitated the effective spatial separation of photoexcited charge carriers and preserved the potent redox potential of photogenerated electrons and holes. This work offers a valuable reference for the integration of photocatalysis with the PMS-based Fenton-like process.


Assuntos
Elétrons , Poluentes Ambientais , Porosidade , Iluminação
2.
J Hazard Mater ; 443(Pt B): 130326, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444054

RESUMO

Reasonable regulation of the micro-morphology of material can significantly enhance the related performance. Herein, bismuth tungstate (Bi2WO6, simplified as BWO) porous hollow spheres with flower-like surface were prepared successfully, and this unique morphology endowed BWO with improved photocatalytic performance by reflecting and absorbing the light multiple times inside the cavity. To inhibit the rapid recombination of photogenerated e--h+ pairs within BWO itself, black phosphorous quantum dots (BPQDs) were anchored onto the nanosheets of BWO sphere closely by a facile self-assembly process, which will not shade the pores of BWO owing to the small size of BPQDs, but the BP nanosheets have the chance to do that. The band gap of BPQDs expanded much after exfoliation due to the quantum confinement effects, which matched the energy band of BWO well to form S-scheme heterojunction, achieving more efficient separation of photogenerated charges. As a result, the BPQDs/BWO exhibited attractive photocatalytic performance in the degradation of amoxicillin (AMX) and other antibiotics. Besides, the operation conditions were optimized, specifically, 94.5 % of AMX (20 mg/L, 200 mL) can be removed in 60 min when 50 mg of 2BPQDs/BWO was used as catalyst with solution pH = 11. Moreover, a possible degradation pathway of AMX was proposed based on the detected intermediates.


Assuntos
Amoxicilina , Pontos Quânticos , Fósforo , Porosidade , Luz
3.
J Sci Food Agric ; 101(10): 4350-4360, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33420734

RESUMO

BACKGROUND: Melt crystallization is typically recognized as a highly efficient and green method for oil fractionation. This work concentrated on novel layer melt crystallization for preparing desirable olein and stearin products from palm oil and the evaluation of fraction quality. Layer melt crystallization was performed at various temperatures and the effects on fractions were evaluated using iodine value (IV), solid fat content (SFC) and melting point. The lipid composition, thermal and crystallization properties, and phase behaviors of the final optimized fractions were determined using gas chromatography, high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and differential scanning calorimetry. RESULTS: Increasing crystallization tube temperatures under the same jacket temperature increased the melting point and SFC, while decreasing the IV of the olein product. Opposite results were observed for the stearin product. Major fatty acids in fractions were determined as palmitic acid and oleic acid. 1,2-Dioleoyl-3-palmitoylglycerol and 1,3-dipalmitoyl-2-oleoylglycerol were identified as the main triacylglycerols in olein and stearin fractions, respectively. A critical effect of crystallization temperature on co-crystallization of oleins and stearins was revealed. A transition from plate-like crystal growth to spherulitic growth with spontaneous nucleation was indicated in palm oil and stearin fractions with increasing crystallization temperature. As for olein fractions, a temperature increase resulted in heterogeneous nucleation from instantaneous nucleation. CONCLUSIONS: Novel layer melt crystallization was successfully applied and optimized for fractionating palm oil. The composition and property changes of obtained fractions were analyzed and explained at both macroscopic and microscopic levels. © 2021 Society of Chemical Industry.


Assuntos
Lipídeos/química , Ácido Oleico/química , Óleo de Palmeira/química , Ácidos Esteáricos/química , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Cristalização , Espectrometria de Massas , Temperatura
4.
J Agric Food Chem ; 67(41): 11518-11526, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31513385

RESUMO

In this work, the effects of α-linolenic acid (ALA) loaded in oil-in-water (O/W) and water-in-oil-in-water (W/O/W) microemulsions on cell viability, lactic dehydrogenase (LDH) viability, and reactive oxygen species (ROS) levels were examined using Cell Counting Kit-8 (CCK-8), an LDH assay kit, and a fluorescence microscope, respectively. The CCK-8 assay demonstrated that ALA inhibited MDA-MB-231 human breast cancer cell proliferation in a dose-dependent manner. Further, the results of LDH activity and ROS levels revealed that ALA-induced cancer cell damage was closely related to oxidative stress. Under the irradiation of ultraviolet light, the microemulsion without any added fluorescent dye would emit bright blue fluorescence, and the fluorescent images of the cells treated with ALA-loaded O/W and W/O/W microemulsions at different incubation times were taken, which exhibited long-term photostability and biocompatibility. In addition, the fluorescence mechanism of the microemulsion was explained by immobilizing surfactant molecules with aggregation-induced emission (AIE) properties at the water-oil interface through the microemulsion with a self-assembled structure. These findings showed the potential application of O/W and W/O/W microemulsions as the label-free delivery carriers in long-term imaging of living cells and real-time release monitoring of nutrients.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ácido alfa-Linolênico/química , Ácido alfa-Linolênico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Emulsões/química , Emulsões/farmacologia , Fluorescência , Humanos , Óleos/química , Espécies Reativas de Oxigênio/metabolismo , Água/química
5.
J Agric Food Chem ; 66(49): 13020-13030, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30507107

RESUMO

Our previous work has demonstrated that α-linolenic acid (ALA)-loaded oil-in-water (O/W) microemulsion could enhance ALA antioxidant capacity. Meanwhile, we also observed that synthesized microemulsion itself had fluorescence. In this work, we have prepared a multiple water-in-oil-in-water (W/O/W) microemulsion to further enhance ALA antioxidant capacity and activate this delivery carrier application potential with a free label. The compositions of primary water-in-oil (W/O) microemulsion were obtained using pseudo-ternary phase diagrams, and then W/O/W microemulsion was prepared adopting the "two-step heterotherm method". The conductivity of W/O/W microemulsion was measured to lie between 250.0 and 350.0 µs/cm. The spherical droplets with a mean particle diameter of 10.0-20.0 nm were confirmed by transmission electron microscopy and dynamic light scattering. Nuclear magnetic resonance confirmed that ALA diffused to the multiple water-oily interface simultaneously. In addition, the in vitro release and antioxidant capacity measurements of ALA-loaded W/O/W microemulsion concluded the sustained-release effect and excellent antioxidant capacity. The fluorescent intensity of W/O/W microemulsion was markedly increased in comparison to O/W microemulsion. The synthesized microemulsion could lead to important applications and have advantages of a label-free fluorescent carrier for optical imaging purposes.


Assuntos
Emulsões/química , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/química , Antioxidantes , Sistemas de Liberação de Medicamentos , Condutividade Elétrica , Fluorescência , Tamanho da Partícula , Pentanóis/química , Espectrometria de Fluorescência/métodos , Tensoativos , Água/química
6.
J Agric Food Chem ; 66(26): 6917-6925, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29932339

RESUMO

Various active ingredients play a crucial role in providing and supplementing the nutritional requirements of organisms. In this work, we attempted to chemically manipulate the interfacial microstructure of oil-water microemulsions (ME) with carbon dots (CDs), concentrating on substantially enhancing the antioxidant capacity of α-linolenic acid (ALA). To this end, CDs were synthesized and introduced into an ME. The molecular interaction of surfactant with CDs was investigated by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The microstructure of the ME was monitored by transmission electron microscopy (TEM) and cryo-electron microscopy (cryo-EM). The cryo-EM result showed the oil-water interface in the ME was better defined after the CDs were loaded, and 1H NMR proved the CDs were distributed mainly at the interface. On the basis of these results, interfacial models were proposed. Final evaluation results demonstrated the stabilizing effect and oxidation-inhibition ability of the ALA-loaded ME was substantially enhanced after the introduction of the CDs, indicating a "turn off" effect of the interface. Interestingly, CDs do not affect the in vitro release of ALA, indicating a "turn on" effect of the interface. This work provided a successful interface manipulation with a nanocarrier that can be used for a large diversity of food nutraceuticals.


Assuntos
Antioxidantes/química , Óleos/química , Ácido alfa-Linolênico/química , Carbono/química , Emulsões/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
7.
Food Chem ; 256: 311-318, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29606454

RESUMO

α-Linolenic acid (ALA)-loaded microemulsion (ME) was prepared from isoamyl acetate, polyoxyethylene ether 35 (EL-35), ethanol and water. The dynamic phase behaviour was simulated using dissipative particle dynamics (DPD), which showed that spherical ME was formed at water/oil ratios of 1:9 and 9:1, while a lamellar structure with distinctive water-course and oil layer appeared at ratios of 3:7, 5:5, and 7:3. Phase stabilizing and anti-oxidation effect of environmental stresses on ALA-loaded microemulsion were investigated. Results showed that the ME region was large and had good environmental tolerance. Subsequently, the investigation of anti-oxidation stability revealed that more than 60% ALA of ALA-loaded ME could be protected from oxidation under environmental stresses. Furthermore, ALA-loaded ME was applied in aqueous-based foods. The transparency, precipitate, stratification and phase separation were used to evaluate influence of ME on product properties, confirming great feasibility and stability of ALA-loaded ME for practical applications.


Assuntos
Meio Ambiente , Modelos Teóricos , Óleos/química , Estresse Fisiológico , Água/química , Ácido alfa-Linolênico/química , Emulsões , Oxirredução
8.
Food Funct ; 8(8): 2792-2802, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28703829

RESUMO

The applications of α-linolenic acid (ALA) in the food industry are restricted due to its poor water solubility and antioxidant stability. This study concentrates on developing an ALA-loaded microemulsion (ALA-ME) to enhance its solubility and antioxidant capacity. The formulation of the microemulsion was investigated based on pseudoternary phase diagrams. The ALA-ME was characterized by using electrical conductivity, viscosity and transmission electron microscopy (TEM). The microstructure of the ALA-ME was probed using nuclear magnetic resonance (1H-NMR). The results proved that ALA-ME consisted of spheroidal droplets with 20-40 nm diameter. A structural transformation from water in oil (W/O) to oil in water (O/W) occurred, as seen from the electrical conductivity determination. The 1H-NMR results revealed a transition of the ALA position encapsulated from the core area of the microemulsion to the lipophilic layer of the surfactant. Furthermore, two microstructural models of ALA-ME were proposed. The antioxidant evaluation demonstrated that the ALA antioxidant capacity in microemulsions was enhanced to about 80% compared with that of ALA in oil solution.


Assuntos
Antioxidantes/química , Ácido alfa-Linolênico/química , Condutividade Elétrica , Emulsões/química , Óleos/química , Tamanho da Partícula , Solubilidade , Viscosidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA