Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 32(1): 24-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36134483

RESUMO

In the past 10 years, the systemic treatment of advanced melanoma has undergone tremendous changes through the development of targeted therapy. However, there is still a long way to go. This study aims to characterize the function and interaction of ITGAX, SERPINB8 and furin in BRAF V600E mutant melanoma. Differentially expressed genes related to BRAF V600E mutation and BRAFi treatment were obtained by analysing GSE141484 and GSE22838. two kinds of BRAFi (Vemurafenib, 10 µM; Dabrafenib, 1 µM) were used to treat A375 and 1205Lu cells, respectively. The expression of ITGAX, SERPINB8 and Furin in A375 and 1205Lu cells was down-regulated by specific siRNAs, and cell proliferation, clone formation and invasion were detected by CCK-8, colony formation and transwell assays. The physical binding of furin and SERPINB8 was detected by immunoprecipitation. BRAFi treatment down-regulated the ITGAX and SERPINB8 expression and did not change furin expression. Knockdown of ITGAX and SERPINB8 both inhibited the proliferation and invasion of A375 and 1205Lu cells. Knocking down SERPINB8 down-regulated the expression of ITGAX. Furin knockdown and inhibitors all up-regulated the protein level of ITGAX. SERPINB8 can physically bind to furin. In summary, SERPINB8 and furin regulate the expression of ITGAX in melanoma cells, and ITGAX significantly promotes the proliferation and invasion of melanoma cells.


Assuntos
Melanoma , Inibidores de Proteínas Quinases , Humanos , Antígeno CD11c , Proliferação de Células , Furina/genética , Melanoma/genética , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética
2.
Exp Dermatol ; 31(10): 1563-1578, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35730240

RESUMO

Melanoma has a higher mortality rate than any other skin cancer, and its cases are increasing. The transcription factor YY1 has been proven to be involved in tumour progression; however, the role of YY1 in melanoma is not well understood. This study investigates how YY1 functions in melanoma progression, and it also elucidates the underlying mechanisms involved. We have found that in clinical human melanoma tissues, YY1 is overexpressed compared with YY1 expression in normal melanocytes and skin tissues. Cellular immunofluorescence shows that YY1 is mainly located in the nucleus. YY1 knockdown reduces proliferation, migration and invasion of melanoma cell lines. Moreover, the apoptosis rate of cells is significantly increased in low-YY1 environments. The overexpression of YY1 resulted in decreased apoptotic rates in melanoma cells. YY1 also affects the expression of EMT-related proteins. Additional experiments reveal that YY1 knockdown disrupts the interaction of MDM2-p53, and that it both stabilizes and increases p53 activity. The upregulation of p53 expression in turn stimulates p21 expression just as it suppresses CDK4 expression, which then induces cells that were arrested in the G1 phase. The effect then is to constrain cell proliferation in melanoma cells. Upon activation of the p53 pathway, Bax, a pro-apoptotic protein, is upregulated, and Bcl-2, an anti-apoptotic protein, was downregulated in A375 cells. The findings of this study provide novel insights into the pathology of melanoma as well as the role that YY1 plays in tumour progression. The findings also suggest that targeting YY1 has the potential to improve the diagnosis and treatment of melanoma.


Assuntos
Melanoma , Proteína Supressora de Tumor p53 , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
J Invest Dermatol ; 142(11): 2978-2987.e6, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35513071

RESUMO

It is well known that psoriasis is closely related to smoking, and CHRNA5 plays an important role in smoking-related diseases. However, studies on the relationship between CHRNA5 and psoriasis are limited. This study aimed to examine the role of CHRNA5 in psoriasis development and pathogenesis. Analysis in psoriatic tissues and imiquimod-induced mouse models showed that CHRNA5 was highly expressed in psoriatic lesional skin. To further verify the function of CHRNA5, we constructed Chrna5-knockout mice and induced the psoriasis model. We found that Chrna5 knockout significantly reduced the severity of psoriasis and could regulate inflammation through the MAPK kinase kinase-1/c-Jun N-terminal kinase‒MAPK/NF-κB pathway. The single-cell sequencing results revealed that after Chrna5 knockout, the keratinocyte subpopulation was significantly reduced and the related Jak/signal transducer and activator of transcription signaling pathway was downregulated, further indicating the importance of CHRNA5 in psoriasis. Human keratinocytes were analyzed, and silencing CHRNA5 inhibited keratinocyte proliferation and migration. In summary, CHRNA5 played important roles in the development and pathogenesis of psoriasis, and targeting CHRNA5 may be an effective strategy for the treatment of psoriasis.


Assuntos
Psoríase , Receptores Nicotínicos , Camundongos , Animais , Humanos , Imiquimode/farmacologia , NF-kappa B/metabolismo , Psoríase/metabolismo , Queratinócitos/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Proliferação de Células/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo , Receptores Nicotínicos/metabolismo
4.
Technol Cancer Res Treat ; 21: 15330338221082431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243940

RESUMO

Background: Malignant melanoma is a common malignant tumor and one of the tumors with the fastest growing incidence. The effect of microRNAs on the biological processing of malignant melanoma cells also have been reported. This study explores the ability of miR-498 to regulate the progression of malignant melanoma cells. Methods: The expression of miR-498 was detected by RT-qPCR. The proliferation, invasion, and migration of malignant melanoma cells were measured by cell counting kit-8, clone formation, and transwell assays. Flow cytometry assay detected the percentage of apoptotic cells. Western blot was used to detect the expression of markers related to epithelial-mesenchymal transition. The correction of miR-498 and UBE2T was explored by dual-luciferase assay and Western blot. Results: Overexpression of miR-498 inhibited the proliferation, invasion, migration, and induced cell apoptosis of M14 and A375 cells. In addition, the expression of epithelial-mesenchymal transition-related factors was altered by the overexpression of miR-498. miR-498 can directly target UBE2T 3'-UTR and inhibit UBE2T protein expression. The overexpression of UBE2T reversed the inhibitory effects of miR-498 on the progression of malignant melanoma cells. Furthermore, UBE2T mRNA was significantly highly expressed in malignant melanoma tissues. The high expression of UBE2T was associated with the poor overall survival rate of malignant melanoma patients. Conclusions: Altogether, our findings demonstrated that miR-498 significantly inhibited the proliferation, invasion, migration, and induced apoptosis of malignant melanoma cells and confirmed that miR-498 regulated malignant melanoma cell progression by targeting UBE2T.


Assuntos
Melanoma , MicroRNAs , Enzimas de Conjugação de Ubiquitina , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Cutâneas , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Melanoma Maligno Cutâneo
5.
Bioengineered ; 13(2): 4573-4586, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35152838

RESUMO

The regulatory network of competing endogenous RNAs (ceRNA) exists widely in tumors and affects the expression of cancer-related genes, thus playing an important role in the development and prognosis of human tumors. In this research, we explored the role and mechanism of LINC00665 as a ceRNA in breast cancer. We analyzed the expression and targets of LINC00665 in breast cancer using bioinformatics, and detected their effects on breast cancer cells by CCK8, transwell, colony formation and flow cytometry assays. From our results, LINC00665 knockdown suppressed the proliferation, migration and invasion and induced the apoptosis through inactivating the AKT/mTOR signaling pathway in MCF7 and MDA-MB-231 cells. LINC00665 had five potential downstream target miRNAs (miR-542-3p, miR-624-5p, miR-641, miR-425-5p, and miR-30-3p). In dual-luciferase report gene assay, the fluorescence activity of cells transfected with miR-641 mimics decreased, and the expression of miR-641 decreased significantly after knocking down LINC00665. miR-641 mimics significantly inhibited cell proliferation and invasion in MCF7 and MDA-MB-231 cells. We detected five potential direct targets of miR-641 using qPCR (SRCAP, SIKE1, NADK, KHDC4, and HSPG2). SRCAP expression decreased significantly in miR-641 overexpression cells and the binding of SRCAP's 3'UTR and miR-641 was further confirmed by dual-luciferase report gene assay. SRCAP blocked the proliferation and invasion inhibition induced by miR-641 or si-LINC00665 in MCF7 and MDA-MB-231 cells. In conclusion, LINC00665 could promote the survival and metastasis of breast cancer cells through sponging miR-641 and targeting SRCAP. This research provided new potential targets for targeted therapy in human breast cancer.


Assuntos
Adenosina Trifosfatases/genética , Neoplasias da Mama , MicroRNAs/genética , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos
6.
Front Cell Dev Biol ; 9: 662763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485271

RESUMO

The neuron derived synaptic adhesion molecular neuroligin-3 (NLGN3) plays an important role in glioma growth. While the role of autocrine NLGN3 in glioma has not been well-studied. The expression of NLGN3 in glioma was detected using immunohistochemistry. We further explored its function and regulatory mechanism in U251 and U87 cells with high expression of NLGN3. Knockdown of endogenous NLGN3 significantly reduced the proliferation, migration, and invasion of glioma cells and down-regulated the activity of the PI3K-AKT, ERK1/2, and LYN signaling pathways. In comparison, overexpression of NLGN3 yielded opposite results. Our results further demonstrate that LYN functions as a feedback mechanism to promote NLGN3 cleavage. This feedback regulation was achieved by upregulating the ADAM10 sheddase responsible for NLGN3 cleavage. Inhibition of ADAM10 suppressed the proliferation, migration, and invasion of glioma cells; oppositely, the expression of ADAM10 was correlated with a higher likelihood of lower grade glioma (LGG) in the brain. Our study demonstrates that glioma-derived NLGN3 promotes glioma progression by upregulating activity of LYN and ADAM10, which in turn promote NLGN3 cleavage to form a positive feedback loop. This pathway may open a potential therapeutic window for the treatment of human glioma.

7.
Front Cell Dev Biol ; 9: 761134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993195

RESUMO

RNA N6-methyladenosine (m6A) modification in tumorigenesis and progression has been highlighted and discovered in recent years. However, the molecular and clinical implications of m6A modification in melanoma tumor microenvironment (TME) and immune infiltration remain largely unknown. Here, we utilized consensus molecular clustering with nonnegative matrix factorization based on the melanoma transcriptomic profiles of 23 m6A regulators to determine the m6A modification clusters and m6A-related gene signature. Three distinct m6A modification patterns (m6A-C1, C2, and C3), which are characterized by specific m6A regulator expression, survival outcomes, and biological pathways, were identified in more than 1,000 melanoma samples. The immune profile analyses showed that these three m6A modification subtypes were highly consistent with the three known immune phenotypes: immune-desert (C1), immune-excluded (C2), and immune-inflamed (C3). Tumor digital cytometry (CIBERSORT, ssGSEA) algorithm revealed an upregulated infiltration of CD8+ T cell and NK cell in m6A-C3 subtype. An m6A scoring scheme calculated by principal component of m6A signatures stratified melanoma patients into high- and low-m6sig score subgroups; a high score was significantly associated with prolonged survival and enhanced immune infiltration. Furthermore, fewer somatic copy number alternations (SCNA) and PD-L1 expression were found in patients with high m6Sig score. In addition, patients with high m6Sig score demonstrated marked immune responses and durable clinical benefits in two independent immunotherapy cohorts. Overall, this study indicated that m6A modification is involved in melanoma tumor microenvironment immune regulation and contributes to formation of tumor immunogenicity. Comprehensive evaluation of the m6A modification pattern of individual tumors will provide more insights into molecular mechanisms of TME characterization and promote more effective personalized biotherapy strategies.

8.
Aging (Albany NY) ; 12(3): 2393-2407, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015216

RESUMO

Malignant melanoma is a type of very dangerous skin cancer. Histone modifiers usually become dysregulated during the process of carcinoma development, thus there is potential for a histone modifier inhibitor as a useful drug for cancer therapy. There is a multitude of evidence regarding the role of G9a, a histone methyltransferase (HMTase), in tumorigenesis. In this study, we first showed that G9a was significantly upregulated in melanoma patients. Using the TCGA database, we found a significantly higher expression of G9a in primary melanoma samples (n = 461) compared to normal skin samples (n = 551). Next, we knocked down G9a in human M14 and A375 melanoma cell lines in vitro via small interfering RNA (siRNA). This resulted in a significant decrease in cell viability, migration and invasion, and an increase in cell apoptosis. UNC0642 is a small molecule inhibitor of G9a that demonstrates minimal cell toxicity and good in vivo pharmacokinetic characteristics. We investigated the role of UNC0642 in melanoma cells, and detected its anti-cancer effects in vitro and in vivo. Next, we treated cells with UNC0642, and observed a significant decrease in cell viability in M14 and A375 cell lines. Furthermore, treatment with UNC0642 resulted in increased apoptosis. In immunocompetent mice bearing A375 engrafts, treatment with UNC0642 inhibited tumor growth. Results of Western blot analysis revealed that administration of UNC0642 or silencing of G9a expression by siRNA reduced Notch1 expression significantly and decreased the level of Hes1 in A375. All in all, the data from our study demonstrates potential of G9a as a therapeutic target in the treatment of melanoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Melanoma/patologia , Receptor Notch1/metabolismo , Neoplasias Cutâneas/patologia , Animais , Biomarcadores Tumorais/análise , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Transdução de Sinais/fisiologia , Regulação para Cima , Melanoma Maligno Cutâneo
9.
J Cell Physiol ; 235(11): 7816-7826, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31907929

RESUMO

The roles of α5-nicotinic acetylcholine receptors (α5-nAChRs) in various types of solid cancer have been reported; however, its role in melanoma remains unknown. We knocked down α5-nAChR expression in melanoma cells to investigate the role of α5-nAChR in the proliferation, migration, and invasion of melanoma cells, and its effect on downstream signaling pathways. Using immunohistochemical analysis, we determined that α5-nAChR expression is significantly increased in human melanoma tissues and cell lines compared with normal human skin tissues. Knocking down α5-nAChR expression in melanoma cells in culture significantly inhibited the proliferation, migration, and invasiveness of melanoma cell lines. Specifically, knockdown of α5-nAChR inhibited PI3K-AKT and ERK1/2 signaling activity. Moreover, we confirmed that the Notch1 signaling pathway is the downstream target of α5-nAChR in melanoma. Our findings suggest that α5-nAChR plays a critical role in melanoma development and progression, and that targeting α5-nAChR may be a strategy for melanoma treatment.


Assuntos
Melanoma/patologia , Receptor Notch1/metabolismo , Receptores Nicotínicos/metabolismo , Neoplasias Cutâneas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Xenoenxertos , Humanos , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/metabolismo
10.
J Cancer ; 10(5): 1197-1208, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854129

RESUMO

Melanoma is a malignant tumor of cutaneous melanocytes that is characterized by high grade malignancy, rapid progression and high mortality. Thus far, its specific etiological mechanism has been unclear. In this study, we discovered that Lyn kinase expression was up-regulated in melanoma tissues and cells. The function of Lyn was determined by knocking down its expression with a lentivirus containing Lyn shRNA and upregulating its expression with pcDNA3.1-Lyn in the melanoma cell lines M14 and A375. The results showed that Lyn knockdown could significantly inhibit the proliferation, migration and invasiveness through its inhibition of apoptosis and autophagy via the PI3K/Akt pathway in melanoma cell lines. This was further confirmed by treatment with PI3K inhibitor BEZ235. Up-regulation of Lyn promoted the expression of p-Akt and Cyclin D1. Additionally, we investigated the effects of Lyn inhibitor Bafetinib on melanoma cells and the results were consistent with Lyn knockdown. Collectively, our results indicated that Lyn plays a carcinogenic role in multiple cellular functions during melanoma development through regulating apoptosis and autophagy via the PI3K/Akt pathway and may be a valuable potential target for the clinical treatment of melanoma.

11.
Med Sci (Paris) ; 34 Focus issue F1: 87-93, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30403181

RESUMO

Melanoma is a common and aggressive skin cancer caused by the oncogenic transformation of melanocytes. NPS-2143 (hydrochloride) is a calcification drug that acts as an antagonist of the calcium-sensing receptor (CaSR) and consequently stimulates the release of parathyroid hormone. In the present work, we treated cells from the human melanoma cell line M14 to investigate the effects of NPS-2143 on melanoma cells and elucidate their underlying mechanisms. We observed that NPS-2143 inhibits the survival and proliferation of M14 cells and suppresses the migration and proliferation of M14 cells by inducing apoptosis. The Bax/Bcl­2 ratio in M14 cells was enhanced by the NPS-2143 treatment, suggesting that the mitochondrial apoptotic pathway was activated. The expression and phosphorylation of proteins involved in the PI3K signaling pathway were altered by NPS-2143 treatment. Our data show that NPS-2143 impacts the viability and induces the apoptosis of melanoma M14 cells through its impact on the PI3K signaling pathway. It suggests that NPS-2143 could represent a promising candidate for melanoma treatment.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Melanoma/patologia , Naftalenos/farmacologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
Open Med (Wars) ; 13: 416-424, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613786

RESUMO

OBJECTIVE: To investigate the effect of MDA-19 on progression of melanoma, and explore the relevant mechanism. METHODS: The melanoma cell lines, M14 and UACC257, were treated with different concentrations of MDA-19, then CCK8, clone formation assay, Transwell and flow cytometry assays were performed to examine cell proliferation, migration, invasion and apoptosis, respectively. The expression of apoptosis-related proteins (Bcl-2, Bax and caspase 3 P17), EMT and signaling pathway-related proteins were also detected by Western blot. RESULTS: MDA-19 inhibited melanoma cells in a dose-dependent manner. Compared to the NC group, MDA-19 significantly inhibited cell growth capacity, migration and invasion of M14 and UACC257 cells, and accelerated cell apoptosis in a mitochondrial pathway through regulating Bcl-2/Bax and Caspase 3 in M14 and UACC257 cells. Moreover, MDA-19 was observed to up-regulate the expression of E-cad and down-regulate the expression of N-cad, Vimentin and Slug in melanoma cells in vitro. Furthermore, MDA-19 could inhibit the PI3K/Akt pathway by blocking Akt phosphorylation (p-Akt) and downstream proteins, P70 and Cyclin D1 in M14 and UACC257 cells. CONCLUSION: Our data demonstrate that MDA-19 could inhibit progression of melanoma by suppressing the PI3K/Akt pathway, suggesting that MDA-19 is a potential anti-cancer agent for therapy of melanoma.

13.
Oncotarget ; 8(45): 78530-78544, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108247

RESUMO

Melanoma is a tumor produced by skin melanocytes, which has a high metastatic rate and poor prognosis. So far, plenty of work has been done on melanoma, but mechanisms underlying melanoma development have not been fully elucidated. Here we identified regulator of G protein signaling 4(RGS4) as novel therapeutic target for malignant melanoma and its regulating effect on melanoma. We found that endogenous RGS4 expression was much lower in melanoma tissues and cells. In A375 cell line with low endogenous RGS4 expression, the function of RGS4 was detected by up-regulation its expression with pcDNA3.1-RGS4 and knockdown its expression with siRNA. Our results showed that RGS4 could significantly reduce the proliferation, migration and invasion of melanoma cells. RGS4 is an important regulator for the apoptosis of melanocyte, and the apoptosis rate is significantly decreased in low RGS4 enviroment. RGS4 induced non-activation of PI3K/AKT pathway, resulting in decreased expression of E2F1 and Cyclin D1, thus constraining cell proliferation and invasion. These results were further confirmed in M14 cell lines. Collectively, our findings show that RGS4 plays an important role in multiple cellular functions of melanoma development and is valuable to be a therapeutic target.

14.
Endocr J ; 64(5): 543-552, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28413172

RESUMO

To understand metformin's effects on fibroblast growth factors (FGFs) and fibroblast growth factor receptor 1 (FGFR1), we investigated circulating fibroblast growth factor-19 (FGF19), FGF21 levels, and FGFR1 in type 2 diabetes mellitus (T2DM). In addition, protein kinase B (Akt) signaling pathway was detected to explain the possible mechanisms. T2DM was induced by feeding rats with high-fat diet for 11 weeks, followed by a low dose of streptozotocin (STZ, 30-35 mg/kg, intraperitoneally). Control rats (Con) were fed on a normal chow; diabetic rats (DM) were fed on high-fat diet supplemented with or without metformin (METF) for 12 weeks (500 mg·kg-1·d-1). Biochemical parameters were detected at the end of 24th weeks. FGFR1 expression and protein kinase B (Akt) phosphorylation in the pancreas and visceral adipose tissues were detected using either Western blot (WB) or immunohistochemistry (IHC). Serum FGF19 and FGF21 were measured using enzyme-linked immune sorbent assay (ELISA). Metformin treated DM rats showed improved glucose, lipid and bile acid metabolism. Besides, significantly decreased FGF19 and increased FGF21 were observed in DM+METF rats. DM rats showed significantly increased FGFR1 both in the pancreas and visceral adipose tissues. While in DM+METF rats, FGFR1 was almost remained at a normal level in the pancreas and increased in the visceral adipose tissue compared to that in DM rats. Besides, metformin treatment restores Akt phosphorylation in both tissues. The altered glucose and lipid profiles by metformin treatment may be associated with the increased circulating FGF21 and tissue-specific expressions of FGFR1.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/sangue , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Diabetes Mellitus Experimental/sangue , Dieta Hiperlipídica , Hipoglicemiantes/farmacologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Metformina/farmacologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
15.
Biomed Rep ; 4(5): 515-518, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27123240

RESUMO

Nicotine, the primary addictive constituent of cigarettes, is believed to contribute to cancer promotion and progression through the activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated cation channels. nAChRs activation can be triggered by the neurotransmitter Ach, or certain other biological compounds, such as nicotine. In recent years, genome-wide association studies have indicated that allelic variation in the α5-α3-ß4 nAChR cluster on chromosome 15q24-15q25.1 is associated with lung cancer risk. The role of nAChRs in other types of cancer has also been reported. The present review highlights the role of nAChRs in types of human cancer.

16.
J Dermatol ; 42(2): 193-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25495156

RESUMO

Vitiligo is a common depigmentary skin disease that may follow a pattern of multifactorial inheritance. The essential factors of its immunopathogenesis is thought to be the selective destruction of melanocytes. As a new class of microregulators of gene expression, miRNA have been reported to play vital roles in autoimmune diseases, metabolic diseases and cancer. This study sought to characterize the different miRNA expression pattern in the peripheral blood mononuclear cells (PBMC) of patients with non-segmental vitiligo (NSV) and healthy individuals and to examine their direct responses to thymosin α1 (Tα1) treatment. The miRNA expression profile in the PBMC of patients with NSV was analyzed using Exiqon's miRCURY LNA microRNA Array. The differentially expressed miRNA were validated by real-time quantitative polymerase chain reaction. We found that the expression levels of miR-224-3p and miR-4712-3p were upregulated, and miR-3940-5p was downregulated in the PBMC. The common clinical immune modulator Tα1 changed the miRNA expression profile. Our analysis showed that differentially expressed miRNA were associated with the mechanism of immune imbalance of vitiligo and that Tα1 could play an important role in changing the expression of these miRNA in the PBMC of patients with NSV. This study provided further evidence that miRNA may serve as novel drug targets for vitiligo therapeutic evaluation.


Assuntos
Adjuvantes Imunológicos/farmacologia , MicroRNAs/sangue , Timosina/análogos & derivados , Vitiligo/genética , Vitiligo/imunologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Criança , Regulação para Baixo , Feminino , Humanos , Leucócitos Mononucleares , Masculino , MicroRNAs/efeitos dos fármacos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Timalfasina , Timosina/farmacologia , Regulação para Cima , Adulto Jovem
17.
Toxicol Appl Pharmacol ; 278(2): 172-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24793809

RESUMO

By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P<0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Neoplasias Pulmonares/metabolismo , Nicotina/toxicidade , Receptores Nicotínicos/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Receptores Nicotínicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
18.
J Dermatol Sci ; 46(3): 169-78, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17425959

RESUMO

BACKGROUND: Dystrophic epidermolysis bullosa (DEB) is an inherited skin fragility disorder where blistering occurs in the sub-lamina densa zone at the level of anchoring fibrils (AFs) of the dermo-epidermal junction. Both autosomal dominant (DDEB) and recessive (RDEB) result from mutations in the type VII collagen gene (COL7A1). OBJECTIVE: The purpose of this study was to understand the genotype-phenotype correlation in Australian patients with DEB. METHODS: Skin biopsies from patients were processed for immunofluorescence mapping, the COL7A1 gene was screened for sequence variants. RESULTS: We report 14 Australian families with different forms of dystrophic epidermolysis bullosa (DEB) with 23 different COL7A1 allelic variants, nine of which were novel. Four cases of RDEB-HS combined two premature termination codon (PTC) variants and three other cases of RDEB-HS with combined PTC and spice-site or glycine substitution variants. G2043R, a de novo dominant variant, was also identified in this study. Four "silent" glycine substitutions were found in this study, G2775S, G1673R, G1338V and G2719A. EB17, with combined R2791W and G2210V variants, had a DDEB-Pasini phenotype, in contrast to two family members who had severe DDEB pruriginosa, with the same genotype. CONCLUSION: In this study, the RDEB variants included nonsense variants, splice site variants, internal deletions or insertions, "silent" glycine substitutions within the triple helix or N or C terminal ends of the triple helix and non-glycine missense variants within the triple helix domain. DDEB usually involves glycine substitutions within the triple helix of COL7A1 although other missense variants or splice-site alterations may underlie some cases.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Mutação/genética , Adolescente , Adulto , Sequência de Bases , Biópsia , Criança , Pré-Escolar , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Pele/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA