Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 136: 108703, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36948366

RESUMO

NK-lysin (NKL) is a positively charged antimicrobial peptide with broad-spectrum bactericidal activities. In this study, the cDNA sequence of NKL (TmNKL) from black scraper (Thamnaconus modestus) was cloned, which encodes a predicted polypeptide of 150 amino acids that contains a surfactant protein B domain with three disulfide bonds. Phylogenetically, TmNKL was most closely related to its teleost counterpart from tiger puffer (Takifugu rubripes). Expression analysis demonstrated that TmNKL transcripts were constitutively expressed in all tested tissues, with the highest expression levels in the gills. Its expression was significantly upregulated in the gills, head kidney, and spleen after infection with Vibrio parahaemolyticus. A linear peptide (TmNKLP40L) and a disulfide-type peptide (TmNKLP40O) were further synthesized and results showed that disulfide bonds are not essential for bactericidal activities of TmNKL, and that both forms of TmNKL exhibited potent bactericidal activities against 4 gram- negative bacteria, including V. parahaemolyticus, V. alginolyticus, Edwardsiella tarda, and V. harveyi. Observed antimicrobial activities are likely due to the effects of TmNKLP40L and TmNKLP40O treatment on disrupting the integrity of both inner and outer membrane of V. parahaemolyticus, resulting in hydrolysis of bacterial genomic DNA. Damaged cell membranes and leakage of intracellular contents were further confirmed using scanning and transmission microscopy. Moreover, administration of 1.0 µg/g TmNKLP40L or TmNKLP40O significantly decreased bacterial load in tissues and thus, pronouncedly enhanced the survival of V. parahaemolyticus-infected fish. Overall, our results demonstrated that TmNKL is a potent innate effector and provides protective effects against bacterial infection.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Tetraodontiformes , Animais , Proteínas de Peixes/química , Peptídeos , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia , Doenças dos Peixes/microbiologia
2.
Fish Shellfish Immunol ; 104: 527-536, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32599058

RESUMO

Complement component 4 (C4) has critical immunological functions in vertebrates. In the current study, a C4 homolog (gcC4) was identified in grass carp (Ctenopharyngodon idella). The full-length 5458 bp gcC4 cDNA contained a 5148 bp open reading frame (ORF) encoding a protein of 1715 amino acids with a signal peptide and eight conservative domains. The gcC4 protein has a high level of identity with other fish C4 counterparts and is phylogenetically clustered with cyprinid fish C4. The gcC4 transcript shows wide tissue distribution and is inducible by Aeromonas hydrophila in vivo and in vitro. Furthermore, its expression also fluctuates upon lipopolysaccharide or flagellin stimulation in vitro. During infection, the gcC4 protein level decreases or increases to varying degrees, and the intrahepatic C4 expression location changes. With gcC4 overexpression, interleukin 1 beta, tumor necrosis factor alpha, and interferon transcripts are all upregulated by A. hydrophila infection. Meanwhile, overexpression of gcC4 reduces bacterial invasion or proliferation. Moreover, gcC4 may activate the NF-κB signaling pathway. These findings demonstrate the vital role of gcC4 in the innate immunity of grass carp.


Assuntos
Carpas/genética , Carpas/imunologia , Complemento C4/genética , Complemento C4/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Complemento C4/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , NF-kappa B/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Transdução de Sinais/imunologia
3.
Fish Shellfish Immunol ; 98: 25-33, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31904539

RESUMO

Mannose-binding lectin (MBL) is a crucial pattern recognition receptor in the host innate immune system. Previously, we reported the biological function of Ctenopharyngodon idella MBL (CiMBL) in initiating the lectin pathway of the complement system. In the present study, we further explored its biological function including the agglutinating ability, binding capacity and protective role in vitro and in vivo. After Aeromonas hydrophila infection, western blot analysis revealed that the CiMBL were fluctuated and expressed in the serum and major immune-related tissues. The result of quantitative PCR (qPCR) showed that the recombinant CiMBL (rCiMBL) significantly inhibited the mRNA expression of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in liver, spleen and hepatic cells. Due to rCiMBL bound to d-mannose, d-galactose, d-glucose, N-acetyl-d-glucosamine (GlcNAc), lipopolysaccharide (LPS), peptidoglycan (PGN) and Agar in the presence of Ca2+, herein gram-positive (Staphylococcus aureus and Micrococcus luteus) and gram-negative (A. hydrophila and Vibrio anguillarum) bacteria were agglutinated by rCiMBL in a Ca2+-dependent manner. More importantly, rCiMBL enhanced the survival rate of grass carp following bacterial infection. Overall, the results provide an evidence that CiMBL can protect grass carp against A. hydrophila infection in aquaculture.


Assuntos
Aglutinação , Carpas/imunologia , Doenças dos Peixes/imunologia , Lectina de Ligação a Manose/imunologia , Monossacarídeos/metabolismo , Polissacarídeos/metabolismo , Aeromonas hydrophila/fisiologia , Animais , Carpas/metabolismo , Proteínas de Peixes/imunologia , Proteínas de Peixes/farmacologia , Bactérias Gram-Negativas/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Bactérias Gram-Positivas/fisiologia , Lectina de Ligação a Manose/farmacologia , Substâncias Protetoras/farmacologia
4.
Dev Comp Immunol ; 99: 103408, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31173786

RESUMO

Mannose-binding lectin (MBL) is a vital component in host's innate immune system and the initiator of the lectin pathway of complement cascade. However, its opsonic role has rarely been reported. In this study, we revealed the biological function of Ctenopharyngodon idella MBL (CiMBL) in regulating monocytes/macrophages (MO/MФ) in the grass carp (C. idella). Flow cytometry results indicated that recombinant CiMBL (rCiMBL) significantly enhanced the phagocytotic activity of MO/MФ. Recombinant CiMBL also enhanced bactericidal activity and respiratory burst capacity in Aeromonas hydrophila-infected MO/MФ, regulated A. hydrophila-induced polarization of MO/MФ including down- and up-regulated pro- and anti-inflammatory cytokines, respectively, suppressed the inducible nitric oxide synthase activity, and enhanced the arginase activity. In addition, rCiMBL suppressed the bacteria burden in tissues and blood in vivo and enhanced the survival rate of juvenile A. hydrophila-infected grass carp. We provide evidence that CiMBL was synthesized by MO/MФ, regulating the biological function of MO/MФ against A. hydrophila infection.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Macrófagos/imunologia , Lectina de Ligação a Manose/imunologia , Monócitos/imunologia , Aeromonas hydrophila/fisiologia , Animais , Carga Bacteriana , Carpas/microbiologia , Células Cultivadas , Doenças dos Peixes/microbiologia , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Inata , Macrófagos/microbiologia , Lectina de Ligação a Manose/antagonistas & inibidores , Lectina de Ligação a Manose/genética , Viabilidade Microbiana , Monócitos/microbiologia , Fagocitose , Explosão Respiratória , Análise de Sobrevida
5.
Fish Shellfish Immunol ; 87: 871-878, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30776542

RESUMO

Viral infection is often accompanied with alteration of intracellular redox state, especially an imbalance between reactive oxygen species (ROS) production and antioxidant cellular defenses. The previous studies showed that an antioxidant cellular defense system, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), played an important role against spring viraemia of carp virus (SVCV) infection in fish. To further reveal the mediated mechanism that Nrf2 active state was affected by protein kinase C (PKC), here we evaluated SVCV replication in host cells by treated with a strong activator of PKC phorbol-12-myristate-13-acetate (PMA) and an inhibitor staurosporine. Our results showed that PMA significantly repressed SVCV replication and viral-induced apoptosis in Epithelioma papulosum cyprini (EPC) cell, suggesting that PKC may exhibit an anti-SVCV effect. Likewise, PMA resulted in a higher phosphorylation levels of PKCε rather than PKCα/ß to participate in the activation of Nrf2, mainly involved in the activation of Nrf2 phosphorylation of Ser40 to favor Nrf2 translocation to nucleus. Furthermore, the data revealed that PMA up-regulated an antiviral response heme oxygenase-1 (HO1) gene expression that was confirmed as the key player against SVCV infection by HO1 specific siRNA. Overall, this study provided a new therapeutic target for the treatment of SVCV infection, and modulating PKC activity could be used for the prevention and treatment of SVCV.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Proteína Quinase C-épsilon/imunologia , Rhabdoviridae/fisiologia , Acetato de Tetradecanoilforbol/análogos & derivados , Animais , Antioxidantes/metabolismo , Carpas/genética , Linhagem Celular , Proteínas de Peixes/genética , Fator 2 Relacionado a NF-E2/genética , Proteína Quinase C-épsilon/genética , Espécies Reativas de Oxigênio/metabolismo , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA