Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuro Oncol ; 21(8): 1039-1048, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31102405

RESUMO

BACKGROUND: Primary central nervous system lymphoma (PCNSL) is a rare form of extra-nodal non-Hodgkin lymphoma. PCNSL is a distinct subtype of non-Hodgkin lymphoma, with over 95% of tumors belonging to the diffuse large B-cell lymphoma (DLBCL) group. We have conducted a genome-wide association study (GWAS) on immunocompetent patients to address the possibility that common genetic variants influence the risk of developing PCNSL. METHODS: We performed a meta-analysis of 2 new GWASs of PCNSL totaling 475 cases and 1134 controls of European ancestry. To increase genomic resolution, we imputed >10 million single nucleotide polymorphisms using the 1000 Genomes Project combined with UK10K as reference. In addition we performed a transcription factor binding disruption analysis and investigated the patterns of local chromatin by Capture Hi-C data. RESULTS: We identified independent risk loci at 3p22.1 (rs41289586, ANO10, P = 2.17 × 10-8) and 6p25.3 near EXOC2 (rs116446171, P = 1.95 x 10-13). In contrast, the lack of an association between rs41289586 and DLBCL suggests distinct germline predisposition to PCNSL and DLBCL. We found looping chromatin interactions between noncoding regions at 6p25.3 (rs11646171) with the IRF4 promoter and at 8q24.21 (rs13254990) with the MYC promoter, both genes with strong relevance to B-cell tumorigenesis. CONCLUSION: To our knowledge this is the first study providing insight into the genetic predisposition to PCNSL. Our findings represent an important step in defining the contribution of common genetic variation to the risk of developing PCNSL.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central/genética , Estudo de Associação Genômica Ampla , Humanos , Linfoma Difuso de Grandes Células B/genética
2.
Blood Cells Mol Dis ; 75: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30502564

RESUMO

Primary CNS lymphomas (PCNSL) are rare and poor prognosis diffuse large B-cell lymphomas. Because of the brain tumor environment and the restricted distribution of drugs in the CNS, specific PCNSL patient-derived orthotopic xenograft (PDOX) models are needed for preclinical research to improve the prognosis of PCNSL patients. PCNSL patient specimens (n = 6) were grafted in the caudate nucleus of immunodeficient nude mice with a 83% rate of success, while subcutaneous implantation in nude mice of human PCNSL sample did not generate lymphoma, supporting the role of the brain microenvironment in the PCNSL physiopathology. PDOXs showed diffuse infiltration of B-cell lymphoma cells in the brain parenchyma. Each model had a unique mutational signature for genes in the BCR and NF-κB pathways and retained the mutational profile of the primary tumor. The models can be stored as cryopreserved biobank. Human IL-10 levels measured in the plasma of PCNSL-PDOX mice showed to be a reliable tool to monitor the tumor burden. Treatment response could be measured after a short treatment with the targeted therapy ibrutinib. In summary, we established a panel of human PCNSL-PDOX models that capture the histological and molecular characteristics of the disease and that proved suitable for preclinical experiments. Our methods of generation and characterization will enable the generation of additional PDOX-PCNSL models, essential tools for cognitive and preclinical drug discovery.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Xenoenxertos/patologia , Linfoma Difuso de Grandes Células B/patologia , Adenina/análogos & derivados , Animais , Núcleo Caudado , Xenoenxertos/efeitos dos fármacos , Humanos , Interleucina-10/análise , Camundongos , Camundongos Nus , Piperidinas , Prognóstico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Carga Tumoral
3.
Nat Commun ; 9(1): 2371, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915258

RESUMO

Chordoid glioma (ChG) is a characteristic, slow growing, and well-circumscribed diencephalic tumor, whose mutational landscape is unknown. Here we report the analysis of 16 ChG by whole-exome and RNA-sequencing. We found that 15 ChG harbor the same PRKCA D463H mutation. PRKCA encodes the Protein kinase C (PKC) isozyme alpha (PKCα) and is mutated in a wide range of human cancers. However the hot spot PRKCA D463H mutation was not described in other tumors. PRKCA D463H is strongly associated with the activation of protein translation initiation (EIF2) pathway. PKCαD463H mRNA levels are more abundant than wild-type PKCα transcripts, while PKCαD463H is less stable than the PCKαWT protein. Compared to PCKαWT, the PKCαD463H protein is depleted from the cell membrane. The PKCαD463H mutant enhances proliferation of astrocytes and tanycytes, the cells of origin of ChG. In conclusion, our study identifies the hallmark mutation for chordoid gliomas and provides mechanistic insights on ChG oncogenesis.


Assuntos
Neoplasias do Ventrículo Cerebral/genética , Glioma/genética , Proteína Quinase C-alfa/genética , Adulto , Idoso , Proliferação de Células , Células Cultivadas , Neoplasias do Ventrículo Cerebral/metabolismo , Feminino , Glioma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação Puntual , Proteína Quinase C-alfa/metabolismo
4.
Br J Cancer ; 119(1): 105-113, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29899393

RESUMO

BACKGROUND: Paraneoplastic neurological syndromes are rare conditions where an autoimmune reaction against the nervous system appears in patients suffering from a tumour, but not linked to the spreading of the tumour. A break in the immune tolerance is thought to be the trigger. METHODS: The transcriptomic profile of 12 ovarian tumours (OT) from patients suffering from paraneoplastic cerebellar degeneration (PCD) linked to anti-Yo antibodies (anti-Yo PCD OT) was compared with 733 ovarian tumours (OT control) from different public databases using linear model analysis. RESULTS: A prominent significant transcriptomic over-representation of CD8+ and Treg cells was found in anti-Yo PCD OT, as compared to the OT control. However, the overall degree of immune cell infiltration was similar, according to the ESTIMATE immune score. We also found an under-representation of M2 macrophages in anti-Yo PCD OT. Furthermore, the differentially expressed genes were enriched for AIRE-related genes, a well-known transcription factor associated with a broad range of autoimmune diseases. Finally, we found that the differentially expressed genes were correlated to the transcriptomic profiling of the cerebellar structures. CONCLUSIONS: Our data pinpointed the enrichment of acquired immune response, particularly high density of CD8+ lymphocytes, and high-level expression of CDR-related antigens in anti-Yo PCD OT.


Assuntos
Proteínas do Tecido Nervoso/genética , Neoplasias Ovarianas/genética , Degeneração Paraneoplásica Cerebelar/genética , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Análise em Microsséries , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas do Tecido Nervoso/imunologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Degeneração Paraneoplásica Cerebelar/complicações , Degeneração Paraneoplásica Cerebelar/imunologia , Degeneração Paraneoplásica Cerebelar/patologia , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transcriptoma/imunologia , Proteína AIRE
5.
Neuro Oncol ; 20(8): 1092-1100, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29432597

RESUMO

Background: Primary central nervous system lymphoma (PCNSL) represents a particular entity within non-Hodgkin lymphomas and is associated with poor outcome. The present study addresses the potential clinical relevance of chimeric transcripts in PCNSL discovered by using RNA sequencing (RNA-seq). Methods: Seventy-two immunocompetent and newly diagnosed PCNSL cases were included in the present study. Among them, 6 were analyzed by RNA-seq to detect new potential fusion transcripts. We confirmed the results in the remaining 66 PCNSL. The gene fusion was validated by fluorescence in situ hybridization (FISH) using formalin-fixed paraffin-embedded (FFPE) samples. We assessed the biological and clinical impact of one new gene fusion. Results: We identified a novel recurrent gene fusion, E26 transformation-specific translocation variant 6-immunoglobulin heavy chain (ETV6-IgH). Overall, ETV6-IgH was found in 13 out of 72 PCNSL (18%). No fusion conserved an intact functional domain of ETV6, and ETV6 was significantly underexpressed at gene level, suggesting an ETV6 haploinsufficiency mechanism. The presence of the gene fusion was also validated by FISH in FFPE samples. Finally, PCNSL samples harboring ETV6-IgH showed a better prognosis in multivariate analysis, P = 0.03, hazard ratio = 0.33, 95% CI = 0.12-0.88. The overall survival at 5 years was 69% for PCNSL harboring ETV6-IgH versus 29% for samples without this gene fusion. Conclusions: ETV6-IgH is a new potential surrogate marker of PCNSL with favorable prognosis with ETV6 haploinsufficiency as a possible mechanism. The potential clinical impact of ETV6-IgH should be validated in larger prospective studies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Sistema Nervoso Central/genética , Cadeias Pesadas de Imunoglobulinas/genética , Linfoma Difuso de Grandes Células B/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Seguimentos , Humanos , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Variante 6 da Proteína do Fator de Translocação ETS
6.
Acta Neuropathol ; 134(5): 691-703, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28638988

RESUMO

Molecular classification of cancer has entered clinical routine to inform diagnosis, prognosis, and treatment decisions. At the same time, new tumor entities have been identified that cannot be defined histologically. For central nervous system tumors, the current World Health Organization classification explicitly demands molecular testing, e.g., for 1p/19q-codeletion or IDH mutations, to make an integrated histomolecular diagnosis. However, a plethora of sophisticated technologies is currently needed to assess different genomic and epigenomic alterations and turnaround times are in the range of weeks, which makes standardized and widespread implementation difficult and hinders timely decision making. Here, we explored the potential of a pocket-size nanopore sequencing device for multimodal and rapid molecular diagnostics of cancer. Low-pass whole genome sequencing was used to simultaneously generate copy number (CN) and methylation profiles from native tumor DNA in the same sequencing run. Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, and the TERT promoter region were identified using deep amplicon sequencing. Nanopore sequencing yielded ~0.1X genome coverage within 6 h and resulting CN and epigenetic profiles correlated well with matched microarray data. Diagnostically relevant alterations, such as 1p/19q codeletion, and focal amplifications could be recapitulated. Using ad hoc random forests, we could perform supervised pan-cancer classification to distinguish gliomas, medulloblastomas, and brain metastases of different primary sites. Single nucleotide variants in IDH1, IDH2, and H3F3A were identified using deep amplicon sequencing within minutes of sequencing. Detection of TP53 and TERT promoter mutations shows that sequencing of entire genes and GC-rich regions is feasible. Nanopore sequencing allows same-day detection of structural variants, point mutations, and methylation profiling using a single device with negligible capital cost. It outperforms hybridization-based and current sequencing technologies with respect to time to diagnosis and required laboratory equipment and expertise, aiming to make precision medicine possible for every cancer patient, even in resource-restricted settings.


Assuntos
Neoplasias Encefálicas/diagnóstico , Epigenômica/métodos , Genômica/métodos , Glioma/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Glioma/genética , Glioma/patologia , Humanos , Nanoporos , Regiões Promotoras Genéticas
8.
Ann Neurol ; 77(4): 675-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25623524

RESUMO

OBJECTIVE: The DEPDC5 (DEP domain-containing protein 5) gene, encoding a repressor of the mTORC1 signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies. We aimed to further extend the role of DEPDC5 to focal cortical dysplasias (FCDs). METHODS: Seven patients from 4 families with DEPDC5 mutations and focal epilepsy associated with FCD were recruited and investigated at the clinical, neuroimaging, and histopathological levels. The DEPDC5 gene was sequenced from genomic blood and brain DNA. RESULTS: All patients had drug-resistant focal epilepsy, 5 of them underwent surgery, and 1 had a brain biopsy. Electroclinical phenotypes were compatible with FCD II, although magnetic resonance imaging (MRI) was typical in only 4 cases. Histopathology confirmed FCD IIa in 2 patients (including 1 MRI-negative case) and showed FCD I in 2 other patients, and remained inconclusive in the last 2 patients. Three patients were seizure-free postsurgically, and 1 had a worthwhile improvement. Sequencing of blood DNA revealed truncating DEPDC5 mutations in all 4 families; 1 mutation was found to be mosaic in an asymptomatic father. A brain somatic DEPDC5 mutation was identified in 1 patient in addition to the germline mutation. INTERPRETATION: Germline, germline mosaic, and brain somatic DEPDC5 mutations may cause epilepsy associated with FCD, reinforcing the link between mTORC1 pathway and FCDs. Similarly to other mTORopathies, a "2-hit" mutational model could be responsible for cortical lesions. Our study also indicates that epilepsy surgery is a valuable alternative in the treatment of drug-resistant DEPDC5-positive focal epilepsies, even if the MRI is unremarkable.


Assuntos
Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Criança , Feminino , Proteínas Ativadoras de GTPase , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA