Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693319

RESUMO

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

2.
BMC Med ; 21(1): 93, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907864

RESUMO

BACKGROUND: Childhood maltreatment is associated with depression and cardiometabolic disease in adulthood. However, the relationships with these two diseases have so far only been evaluated in different samples and with different methodology. Thus, it remains unknown how the effect sizes magnitudes for depression and cardiometabolic disease compare with each other and whether childhood maltreatment is especially associated with the co-occurrence ("comorbidity") of depression and cardiometabolic disease. This pooled analysis examined the association of childhood maltreatment with depression, cardiometabolic disease, and their comorbidity in adulthood. METHODS: We carried out an individual participant data meta-analysis on 13 international observational studies (N = 217,929). Childhood maltreatment comprised self-reports of physical, emotional, and/or sexual abuse before 18 years. Presence of depression was established with clinical interviews or validated symptom scales and presence of cardiometabolic disease with self-reported diagnoses. In included studies, binomial and multinomial logistic regressions estimated sociodemographic-adjusted associations of childhood maltreatment with depression, cardiometabolic disease, and their comorbidity. We then additionally adjusted these associations for lifestyle factors (smoking status, alcohol consumption, and physical activity). Finally, random-effects models were used to pool these estimates across studies and examined differences in associations across sex and maltreatment types. RESULTS: Childhood maltreatment was associated with progressively higher odds of cardiometabolic disease without depression (OR [95% CI] = 1.27 [1.18; 1.37]), depression without cardiometabolic disease (OR [95% CI] = 2.68 [2.39; 3.00]), and comorbidity between both conditions (OR [95% CI] = 3.04 [2.51; 3.68]) in adulthood. Post hoc analyses showed that the association with comorbidity was stronger than with either disease alone, and the association with depression was stronger than with cardiometabolic disease. Associations remained significant after additionally adjusting for lifestyle factors, and were present in both males and females, and for all maltreatment types. CONCLUSIONS: This meta-analysis revealed that adults with a history of childhood maltreatment suffer more often from depression and cardiometabolic disease than their non-exposed peers. These adults are also three times more likely to have comorbid depression and cardiometabolic disease. Childhood maltreatment may therefore be a clinically relevant indicator connecting poor mental and somatic health. Future research should investigate the potential benefits of early intervention in individuals with a history of maltreatment on their distal mental and somatic health (PROSPERO CRD42021239288).


Assuntos
Doenças Cardiovasculares , Maus-Tratos Infantis , Masculino , Adulto , Feminino , Criança , Humanos , Depressão , Maus-Tratos Infantis/psicologia , Comorbidade , Autorrelato , Doenças Cardiovasculares/epidemiologia
3.
Nat Metab ; 4(6): 683-692, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35760867

RESUMO

Phospholipid levels are influenced by peripheral metabolism. Within the central nervous system, synaptic phospholipids regulate glutamatergic transmission and cortical excitability. Whether changes in peripheral metabolism affect brain lipid levels and cortical excitability remains unknown. Here, we show that levels of lysophosphatidic acid (LPA) species in the blood and cerebrospinal fluid are elevated after overnight fasting and lead to higher cortical excitability. LPA-related cortical excitability increases fasting-induced hyperphagia, and is decreased following inhibition of LPA synthesis. Mice expressing a human mutation (Prg-1R346T) leading to higher synaptic lipid-mediated cortical excitability display increased fasting-induced hyperphagia. Accordingly, human subjects with this mutation have higher body mass index and prevalence of type 2 diabetes. We further show that the effects of LPA following fasting are under the control of hypothalamic agouti-related peptide (AgRP) neurons. Depletion of AgRP-expressing cells in adult mice decreases fasting-induced elevation of circulating LPAs, as well as cortical excitability, while blunting hyperphagia. These findings reveal a direct influence of circulating LPAs under the control of hypothalamic AgRP neurons on cortical excitability, unmasking an alternative non-neuronal route by which the hypothalamus can exert a robust impact on the cortex and thereby affect food intake.


Assuntos
Diabetes Mellitus Tipo 2 , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Comportamento Alimentar/fisiologia , Humanos , Hiperfagia/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Neurônios/metabolismo , Sinapses/metabolismo
4.
Hum Brain Mapp ; 43(11): 3577-3584, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35411559

RESUMO

Stressful life events (SLEs) in adulthood are a risk factor for various disorders such as depression, cancer or infections. Part of this risk is mediated through pathways altering brain physiology and structure. There is a lack of longitudinal studies examining associations between SLEs and brain structural changes. High-resolution structural magnetic resonance imaging data of 212 healthy subjects were acquired at baseline and after 2 years. Voxel-based morphometry was used to identify associations between SLEs using the Life Events Questionnaire and grey matter volume (GMV) changes during the 2-year period in an ROI approach. Furthermore, we assessed adverse childhood experiences as a possible moderator of SLEs-GMV change associations. SLEs were negatively associated with GMV changes in the left medial prefrontal cortex. This association was stronger when subjects had experienced adverse childhood experiences. The medial prefrontal cortex has previously been associated with stress-related disorders. The present findings represent a potential neural basis of the diathesis-stress model of various disorders.


Assuntos
Encéfalo , Substância Cinzenta , Adulto , Encéfalo/patologia , Córtex Cerebral , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia
5.
Cell Res ; 32(1): 72-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702947

RESUMO

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Assuntos
Canais de Potássio , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead , Humanos , Camundongos , NF-kappa B , Timócitos , Timo
6.
Mol Psychiatry ; 27(2): 1111-1119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34782712

RESUMO

Major Depressive Disorder (MDD) often is associated with significant cognitive dysfunction. We conducted a meta-analysis of genome-wide interaction of MDD and cognitive function using data from four large European cohorts in a total of 3510 MDD cases and 6057 controls. In addition, we conducted analyses using polygenic risk scores (PRS) based on data from the Psychiatric Genomics Consortium (PGC) on the traits of MDD, Bipolar disorder (BD), Schizophrenia (SCZ), and mood instability (MIN). Functional exploration contained gene expression analyses and Ingenuity Pathway Analysis (IPA®). We identified a set of significantly interacting single nucleotide polymorphisms (SNPs) between MDD and the genome-wide association study (GWAS) of cognitive domains of executive function, processing speed, and global cognition. Several of these SNPs are located in genes expressed in brain, with important roles such as neuronal development (REST), oligodendrocyte maturation (TNFRSF21), and myelination (ARFGEF1). IPA® identified a set of core genes from our dataset that mapped to a wide range of canonical pathways and biological functions (MPO, FOXO1, PDE3A, TSLP, NLRP9, ADAMTS5, ROBO1, REST). Furthermore, IPA® identified upstream regulator molecules and causal networks impacting on the expression of dataset genes, providing a genetic basis for further clinical exploration (vitamin D receptor, beta-estradiol, tadalafil). PRS of MIN and meta-PRS of MDD, MIN and SCZ were significantly associated with all cognitive domains. Our results suggest several genes involved in physiological processes for the development and maintenance of cognition in MDD, as well as potential novel therapeutic agents that could be explored in patients with MDD associated cognitive dysfunction.


Assuntos
Transtorno Depressivo Maior , Cognição , Depressão , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/psicologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Herança Multifatorial/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Imunológicos
7.
Sci Rep ; 11(1): 1125, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441933

RESUMO

Anorexia nervosa (AN) is a severe eating disorder and often associated with altered humoral immune responses. However, distinct B cell maturation stages in peripheral blood in adolescents with AN have not been characterized. Treatment effects and the relationship between clinical and B cell parameters are also not fully understood. Here we investigated the phenotype of circulating B cell subsets and the relationship with body composition in adolescents with AN before (T0, n = 24) and after 6 weeks (T1, n = 20) of treatment. Using multi-parameter flow cytometry, we found increased percentages of antigen-experienced B cells and plasmablasts in patients with AN compared to healthy controls (n = 20). In contrast, percentages of CD1d+CD5+ B cells and transitional B cells with immunoregulatory roles were reduced at T0 and T1. These B cell frequencies correlated positively with fat mass, fat mass index (FMI), free fat mass index, and body mass index standard deviation score. In addition, scavenger-like receptor CD5 expression levels were downregulated on transitional B cells and correlated with fat mass and FMI in AN. Our findings that regulatory B cell subgroups were reduced in AN and their strong relationship with body composition parameters point toward an impact of immunoregulatory B cells in the pathogenesis of AN.


Assuntos
Anorexia Nervosa/imunologia , Anorexia Nervosa/fisiopatologia , Subpopulações de Linfócitos B/imunologia , Composição Corporal , Índice de Massa Corporal , Tecido Adiposo , Adolescente , Anorexia Nervosa/terapia , Antígenos CD19/análise , Linfócitos B Reguladores/imunologia , Feminino , Humanos , Memória Imunológica , Imunofenotipagem , Contagem de Linfócitos
8.
Elife ; 82019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31644424

RESUMO

Recent longitudinal neuroimaging studies in patients with electroconvulsive therapy (ECT) suggest local effects of electric stimulation (lateralized) occur in tandem with global seizure activity (generalized). We used electric field (EF) modeling in 151 ECT treated patients with depression to determine the regional relationships between EF, unbiased longitudinal volume change, and antidepressant response across 85 brain regions. The majority of regional volumes increased significantly, and volumetric changes correlated with regional electric field (t = 3.77, df = 83, r = 0.38, p=0.0003). After controlling for nuisance variables (age, treatment number, and study site), we identified two regions (left amygdala and left hippocampus) with a strong relationship between EF and volume change (FDR corrected p<0.01). However, neither structural volume changes nor electric field was associated with antidepressant response. In summary, we showed that high electrical fields are strongly associated with robust volume changes in a dose-dependent fashion.


Assuntos
Depressão/terapia , Eletroconvulsoterapia/efeitos adversos , Adulto , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/efeitos da radiação , Antidepressivos/uso terapêutico , Mapeamento Encefálico , Depressão/diagnóstico por imagem , Depressão/patologia , Radiação Eletromagnética , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/efeitos da radiação , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/efeitos da radiação , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/patologia , Lobo Temporal/efeitos da radiação
9.
J Psychiatry Neurosci ; 44(6): 423-431, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31304733

RESUMO

Background: Preliminary research suggests that major depressive disorder (MDD) is associated with structural alterations in the brain; as well as with low-grade peripheral inflammation. However, even though a link between inflammatory processes and altered brain structural integrity has been purported by experimental research, well-powered studies to confirm this hypothesis in patients with MDD have been lacking. We aimed to investigate the potential association between structural brain alterations and low-grade inflammation as interrelated biological correlates of MDD. Methods: In this cross-sectional study, 514 patients with MDD and 359 healthy controls underwent structural MRI. We used voxel-based morphometry to study local differences in grey matter volume. We also assessed serum levels of high-sensitivity C-reactive protein (hsCRP) in each participant. Results: Compared with healthy controls (age [mean ± standard deviation] 52.57 ± 7.94 yr; 50% male), patients with MDD (49.14 ± 7.28 yr, 39% male) exhibited significantly increased hsCRP levels (Z = −5.562, p < 0.001) and significantly decreased grey matter volume in the prefrontal cortex and the insula. Prefrontal grey matter volume reductions were significantly associated with higher hsCRP levels in patients with MDD (x = 50, y = 50, z = 8; t1,501 = 5.15; k = 92; pFWE < 0.001). In the MDD sample, the significant negative association between hsCRP and grey matter appeared independent of age, sex, body mass index, current smoking status, antidepressant load, hospitalization and medical comorbidities. Limitations: This study had a cross-sectional design. Conclusion: The present study highlights the role of reduced grey matter volume and low-grade peripheral inflammation as interrelated biological correlates of MDD. The reported inverse association between peripheral low-grade inflammation and brain structural integrity in patients with MDD translates current knowledge from experimental studies to the bedside.


Assuntos
Proteína C-Reativa/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Substância Cinzenta/diagnóstico por imagem , Inflamação/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Estudos Transversais , Feminino , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia
10.
J Neuroimmune Pharmacol ; 13(1): 90-99, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28905187

RESUMO

Pro-inflammatory activity and cell-mediated immune responses have been widely observed in patients with major depressive disorder (MDD). Besides their well-known function as antibody-producers, B cells play a key role in inflammatory responses by secreting pro- and anti-inflammatory factors. However, homeostasis of specific B cell subsets has not been comprehensively investigated in MDD. In this study, we characterized circulating B cells of distinct developmental steps including transitional, naïve-mature, antigen-experienced switched, and non-switched memory cells, plasmablasts and regulatory B cells by multi-parameter flow cytometry. In a 6-weeks follow-up, circulating B cells were monitored in a small group of therapy responders and non-responders. Frequencies of naïve lgD+CD27- B cells, but not lgD+CD27+ memory B cells, were reduced in severely depressed patients as compared to healthy donors (HD) or mildly to moderately depressed patients. Specifically, B cells with immune-regulatory capacities such as CD1d+CD5+ B cells and CD24+CD38hi transitional B cells were reduced in MDD. Also Bm1-Bm5 classification in MDD revealed reduced Bm2' cells comprising germinal center founder cells as well as transitional B cells. We further found that reduced CD5 surface expression on transitional B cells was associated with severe depression and normalized exclusively in clinical responders. This study demonstrates a compromised peripheral B cell compartment in MDD with a reduction in B cells exhibiting a regulatory phenotype. Recovery of CD5 surface expression on transitional B cells in clinical response, a molecule involved in activation and down-regulation of B cell responses, further points towards a B cell-dependent process in the pathogenesis of MDD.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B Reguladores/imunologia , Transtorno Depressivo Maior/imunologia , Homeostase/imunologia , Adulto , Antígenos CD5/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
11.
Front Psychiatry ; 9: 739, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687139

RESUMO

Major depressive disorder (MDD) is a severe mood disorder and frequently associated with alterations of the immune system characterized by enhanced levels of circulating pro-inflammatory cytokines and microglia activation in the brain. Increasing evidence suggests that dysfunction of mitochondria may play a key role in the pathogenesis of MDD. Mitochondria are regulators of numerous cellular functions including energy metabolism, maintenance of redox and calcium homeostasis, and cell death and therefore modulate many facets of the innate immune response. In depression-like behavior of rodents, mitochondrial perturbation and release of mitochondrial components have been shown to boost cytokine production and neuroinflammation. On the other hand, pro-inflammatory cytokines may influence mitochondrial functions such as oxidative phosphorylation, production of adenosine triphosphate, and reactive oxygen species, thereby aggravating inflammation. There is strong interest in a better understanding of immunometabolic pathways in MDD that may serve as diagnostic markers and therapeutic targets. Here, we review the interaction between mitochondrial metabolism and innate immunity in the pathophysiology of MDD. We specifically focus on immunometabolic processes that govern microglial and peripheral myeloid cell functions, both cellular components involved in neuroinflammation in depression-like behavior. We finally discuss microglial polarization and associated metabolic states in depression-associated behavior and in MDD.

12.
Biol Psychiatry ; 82(5): 322-329, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049566

RESUMO

BACKGROUND: The genetics of depression has been explored in genome-wide association studies that focused on either major depressive disorder or depressive symptoms with mostly negative findings. A broad depression phenotype including both phenotypes has not been tested previously using a genome-wide association approach. We aimed to identify genetic polymorphisms significantly associated with a broad phenotype from depressive symptoms to major depressive disorder. METHODS: We analyzed two prior studies of 70,017 participants of European ancestry from general and clinical populations in the discovery stage. We performed a replication meta-analysis of 28,328 participants. Single nucleotide polymorphism (SNP)-based heritability and genetic correlations were calculated using linkage disequilibrium score regression. Discovery and replication analyses were performed using a p-value-based meta-analysis. Lifetime major depressive disorder and depressive symptom scores were used as the outcome measures. RESULTS: The SNP-based heritability of major depressive disorder was 0.21 (SE = 0.02), the SNP-based heritability of depressive symptoms was 0.04 (SE = 0.01), and their genetic correlation was 1.001 (SE = 0.2). We found one genome-wide significant locus related to the broad depression phenotype (rs9825823, chromosome 3: 61,082,153, p = 8.2 × 10-9) located in an intron of the FHIT gene. We replicated this SNP in independent samples (p = .02) and the overall meta-analysis of the discovery and replication cohorts (1.0 × 10-9). CONCLUSIONS: This large study identified a new locus for depression. Our results support a continuum between depressive symptoms and major depressive disorder. A phenotypically more inclusive approach may help to achieve the large sample sizes needed to detect susceptibility loci for depression.


Assuntos
Depressão/genética , Transtorno Depressivo/genética , Loci Gênicos , Predisposição Genética para Doença , Hidrolases Anidrido Ácido/genética , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Neoplasias/genética , Fenótipo , População Branca/genética
13.
J Neuroinflammation ; 9: 125, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22695063

RESUMO

BACKGROUND: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. METHODOLOGY: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs.Principal findings/resultsIn a whole-brain analysis, the polymorphism rs1800795 (-174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = -10, z = -15; F(2,286) = 8.54, p(uncorrected) = 0.0002; p(AlphaSim-corrected) = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. CONCLUSIONS/SIGNIFICANCE: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Interleucina-6/genética , Adulto , Fatores Etários , Alelos , Estudos de Coortes , Feminino , Humanos , Interleucina-6/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
14.
Biol Psychiatry ; 72(8): 655-62, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22554453

RESUMO

BACKGROUND: Cytokines such as tumor necrosis factor (TNF) α have been implicated in neurodegeneration relevant to various neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative properties of cytokine genes on brain function and on hippocampus (HC) function in particular. In this study we investigate the neurodegenerative role of TNF polymorphisms on brain morphology in healthy individuals. METHODS: Voxel-based morphometry was used in a large sample of healthy individuals (n = 303) to analyze the associations between genetic variants of TNF (rs1800629; rs361525) and brain morphology (gray matter concentration). RESULTS: In a region of interest analysis of the HC, for rs1800629, we observed a strong genotype effect on bilateral HC gray matter concentration. Carriers of one or two A-alleles had significantly smaller volumes compared with GG-homozygotes. For rs361525, a similar effect was observed at almost the same location, with the A-allele resulting in smaller HC volumes compared with GG homozygotes. CONCLUSIONS: The findings suggest a neurodegenerative role of the A-alleles of the TNF single nucleotide polymorphisms rs1800629 (-308G/A) and rs361525 (-238G/A) on hippocampal volumes in healthy individuals. Future imaging studies on the role of these single nucleotide polymorphisms in psychiatric populations of diseases with neurodegenerative components are warranted.


Assuntos
Predisposição Genética para Doença , Hipocampo/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética , Fator de Necrose Tumoral alfa/genética , Adolescente , Adulto , Idoso , Feminino , Genótipo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
J Sex Med ; 7(5): 1858-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19751389

RESUMO

INTRODUCTION: Neuropsychological abnormalities in transsexual patients have been reported in comparison with subjects without gender identity disorder (GID), suggesting differences in underlying neurobiological processes. However, these results have not consistently been confirmed. Furthermore, studies on cognitive effects of cross-sex hormone therapy also yield heterogeneous results. AIM: We hypothesized that untreated transsexual patients differ from men without GID in activation pattern associated with a mental rotation task and that these differences may further increase after commencing of hormonal treatment. METHOD: The present study investigated 11 male-to-female transsexual (MFTS) patients prior to cross-sex hormone therapy and 11 MFTS patients during hormone therapy in comparison with healthy men without GID. Using functional magnetic resonance imaging at 3-Tesla, a mental rotation paradigm with proven sexual dimorphism was applied to all subjects. Data were analyzed with SPM5. MAIN OUTCOME MEASURES: Patterns of brain activation associated with a mental rotation task. RESULTS: The classical mental rotation network was activated in all three groups, but significant differences within this network were observed. Men without GID exhibited significantly greater activation of the left parietal cortex (BA 40), a key region for mental rotation processes. Both transsexual groups revealed stronger activation of temporo-occipital regions in comparison with men without GID. CONCLUSIONS: Our results confirmed previously reported deviances of brain activation patterns in transsexual men from men without GID and also corroborated these findings in a group of transsexual patients receiving cross-sex hormone therapy. The present study indicates that there are a priori differences between men and transsexual patients caused by different neurobiological processes or task-solving strategies and that these differences remain stable over the course of hormonal treatment.


Assuntos
Antagonistas de Androgênios/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Acetato de Ciproterona/administração & dosagem , Percepção de Profundidade/efeitos dos fármacos , Percepção de Profundidade/fisiologia , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Estradiol/administração & dosagem , Estradiol/sangue , Identidade de Gênero , Imageamento por Ressonância Magnética , Orientação/efeitos dos fármacos , Orientação/fisiologia , Reconhecimento Visual de Modelos/efeitos dos fármacos , Reconhecimento Visual de Modelos/fisiologia , Resolução de Problemas/efeitos dos fármacos , Resolução de Problemas/fisiologia , Progesterona/sangue , Testosterona/sangue , Transexualidade/fisiopatologia , Transexualidade/cirurgia , Dominância Cerebral/efeitos dos fármacos , Dominância Cerebral/fisiologia , Quimioterapia Combinada , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA