Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(2): e0002323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786587

RESUMO

Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.


Assuntos
Reoviridae , Compartimentos de Replicação Viral , Animais , RNA/metabolismo , Reoviridae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Biochimie ; 180: 229-242, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197551

RESUMO

Antimicrobial peptides (AMPs) play an essential role in plant defense against invading pathogens. Due to their biological properties, these molecules have been considered useful for drug development, as novel agents in disease therapeutics, applicable to both agriculture and medicine. New technologies of massive sequencing open opportunities to discover novel AMP encoding genes in wild plant species. This work aimed to identify cysteine-rich AMPs from Peltophorum dubium, a legume tree from South America. We performed whole-transcriptome sequencing of P. dubium seedlings followed by de novo transcriptome assembly, uncovering 78 AMP transcripts classified into five families: hevein-like, lipid-transfer proteins (LTPs), alpha hairpinins, defensins, and snakin/GASA (Giberellic Acid Stimulated in Arabidopsis) peptides. No transcripts with similarity to cyclotide or thionin genes were identified. Genomic DNA analysis by PCR confirmed the presence of 18 genes encoding six putative defensins and 12 snakin/GASA peptides and allowed the characterization of their exon-intron structure. The present work demonstrates that AMP prediction from a wild species is possible using RNA sequencing and de novo transcriptome assembly, regarding a starting point for studies focused on AMP gene evolution and expression. Moreover, this study allowed the detection of strong AMP candidates for drug development and novel biotechnological products.


Assuntos
Fabaceae/química , Genes de Plantas/genética , Genoma de Planta/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Plântula/genética , Plântula/metabolismo , Motivos de Aminoácidos/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/classificação , Alinhamento de Sequência , Transcriptoma
3.
Biochemistry ; 59(44): 4225-4237, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33135877

RESUMO

Cationic amino acid transporters (CATs) supply cells with essential and semiessential dibasic amino acids. Among them, l-arginine is the substrate for nitric oxide synthases (NOS) to produce nitric oxide (NO), a key signaling molecule and second messenger. In cardiac preparations, we showed that NO acutely and directly modulates transport activity by noncompetitively inhibiting these CATs. We hypothesize that this NO regulation occurs through modification of cysteine residues in CAT proteins. Homology modeling and a computational chemistry approach identified Cys347 as one of two putative targets for NO binding, of 15 Cys residues present in the low-affinity mouse CAT-2A (mCAT-2A). To test this prediction, mammalian cell lines overexpressing mCAT-2A were used for site-directed mutagenesis and uptake studies. When Cys347 was replaced with alanine (Cys347Ala), mCAT-2A became insensitive to inhibition by NO donors. In addition, the transport capacity of this variant decreased by >50% compared to that of the control, without affecting membrane expression levels or apparent affinities for the transported amino acids. Interestingly, replacing Cys347 with serine (Cys347Ser) restored uptake levels to those of the control while retaining NO insensitivity. Other Cys residues, when replaced with Ala, still produced a NO-sensitive CAT-2A. In cells co-expressing NOS and mCAT-2A, exposure to extracellular l-arginine inhibited the uptake activity of control mCAT-2A, via NO production, but not that of the Cys347Ser variant. Thus, the -SH moiety of Cys347 is largely responsible for mCAT-2A inhibition by NO. Because of the endogenous NO effect, this modulation is likely to be physiologically relevant and a potential intervention point for therapeutics.


Assuntos
Transportador 2 de Aminoácidos Catiônicos/metabolismo , Óxido Nítrico/metabolismo , Animais , Transporte Biológico , Células COS , Transportador 2 de Aminoácidos Catiônicos/química , Chlorocebus aethiops , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Transdução de Sinais
4.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
5.
Planta ; 250(5): 1757-1772, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31428874

RESUMO

MAIN CONCLUSION: The recombinant EcgDf1 defensin has an antimicrobial effect against both plant and human pathogens. In silico analyses predict that EcgDf1 is prone to form dimers capable of interacting with the membranes of microorganisms. Plant defensins comprise a large family of antimicrobial peptides (AMP) with a wide range of biological functions. They are cysteine-rich molecules, highly sequence diverse but with a conserved and stable structure. In this work, a defensin gene (EcgDf1) was isolated from Erythrina crista-galli, a legume tree native from South America. The predicted peptide presents eight cysteines, with a γ-core motif GXCX3-9C and six cysteines distributed like the typical defensin αß motif. The mature EcgDf1 coding sequence was heterologously expressed in Escherichia coli strains and purified by affinity chromatography. Possible dimer and oligomers of EcgDf1 were visible in SDS electrophoresis. Moreover, its 3D structure, determined by homology modeling, docking, and molecular dynamics simulations, was found to be compatible with the formation of homodimers between the ß3 and ß1-loop-α1, leaving the ß2-loop-ß3 free to interact with lipid membranes. The purified recombinant peptide inhibited the growth of several critical plant and human pathogens, like the opportunistic fungi Candida albicans and Aspergillus niger and the plant pathogens Clavibacter michiganensis ssp. michiganensis, Penicillium expansum, Botrytis cinerea, and Alternaria alternata. EcgDf1 is a promising candidate for the development of antimicrobial products for use in agriculture and medicine.


Assuntos
Anti-Infecciosos/farmacologia , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Defensinas/farmacologia , Fabaceae/genética , Anti-Infecciosos/metabolismo , Simulação por Computador , Cisteína , Defensinas/genética , Defensinas/metabolismo , Dimerização , Fabaceae/química , Simulação de Dinâmica Molecular , Proteínas de Plantas/genética , Proteínas Recombinantes , Árvores
6.
Amino Acids ; 50(9): 1245-1259, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948342

RESUMO

Snakins are antimicrobial peptides (AMPs) found, so far, exclusively in plants, and known to be important in the defense against a wide range of pathogens. Like other plant AMPs, they contain several positively charged amino acids, and an even number of cysteine residues forming disulfide bridges which are considered important for their usual function. Despite its importance, studies on snakin tertiary structure and mode of action are still scarce. In this study, a new snakin-like gene was isolated from the native plant Peltophorum dubium, and its expression was verified in seedlings and adult leaves. The deduced peptide (PdSN1) shows 84% sequence identity with potato snakin-1 mature peptide, with the 12 cysteines characteristic from this peptide family at the GASA domain. The mature PdSN1 coding sequence was successfully expressed in Escherichia coli. The purified recombinant peptide inhibits the growth of important plant and human pathogens, like the economically relevant potato pathogen Streptomyces scabies and the opportunistic fungi Candida albicans and Aspergillus niger. Finally, homology and ab initio modeling techniques coupled to extensive molecular dynamics simulations were used to gain insight on the 3D structure of PdSN1, which exhibited a helix-turn-helix motif conserved in both native and recombinant peptides. We found this motif to be strongly coded in the sequence of PdSN1, as it is stable under different patterns of disulfide bonds connectivity, and even when the 12 cysteines are considered in their reduced form, explaining the previous experimental evidences.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fabaceae/química , Sequência de Aminoácidos , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Streptomyces/efeitos dos fármacos
7.
J Med Chem ; 54(12): 4042-56, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21500862

RESUMO

Development of kinase-targeted therapies for central nervous system (CNS) diseases is a great challenge. Glycogen synthase kinase 3 (GSK-3) offers a great potential for severe CNS unmet diseases, being one of the inhibitors on clinical trials for different tauopathies. Following our hypothesis based on the enhanced reactivity of residue Cys199 in the binding site of GSK-3, we examine here the suitability of phenylhalomethylketones as irreversible inhibitors. Our data confirm that the halomethylketone unit is essential for the inhibitory activity. Moreover, addition of the halomethylketone moiety to reversible inhibitors turned them into irreversible inhibitors with IC(50) values in the nanomolar range. Overall, the results point out that these compounds might be useful pharmacological tools to explore physiological and pathological processes related to signaling pathways regulated by GSK-3 opening new avenues for the discovery of novel GSK-3 inhibitors.


Assuntos
Fármacos do Sistema Nervoso Central/síntese química , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Cetonas/síntese química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Bovinos , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/farmacologia , Cerebelo/citologia , Desenho de Fármacos , Humanos , Técnicas In Vitro , Cetonas/química , Cetonas/farmacologia , Camundongos , Modelos Moleculares , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Ratos , Receptores de Neurotransmissores/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade , Proteínas tau/metabolismo
8.
Amino Acids ; 38(5): 1583-93, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19888548

RESUMO

The histone chaperone nucleosome assembly protein, hNAP-1, is a host cofactor for the activity of the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. The interaction between these two proteins has been shown to be important for Tat-mediated transcriptional activation and for efficient viral infection. Visualization of HIV-1 transcription and fluorescence resonance energy transfer experiments performed in this work demonstrate that hNAP-1 is not recruited to the site of Tat activity but the two proteins interact at the nuclear rim. These data are consistent with a mechanism that requires hNAP-1 for the transport of Tat within the nucleus rather than for the remodeling of nucleosomes on the provirus. Protein-protein docking and molecular modeling of the complex suggest that this interaction occurs between the basic domain of Tat and the histone-binding domain. The combination of theoretical and whole cell studies provided new insights into the functional significance of the Tat:hNAP-1 recognition.


Assuntos
Produtos do Gene tat/metabolismo , HIV/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Frações Subcelulares/metabolismo , Sequência de Bases , Imunofluorescência , Humanos , RNA Interferente Pequeno
9.
J Chem Inf Model ; 49(6): 1407-19, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19463014

RESUMO

Quantum and nonquantum descriptors clearly related to physicochemical features and predictors of the trends to evolve along different stages of a known mechanism of action were determined for a set of square-planar compounds of general formula [M(II)A(1)A(2)L(1)L(2)] (M(II) = Pt(II)/Pd(II); A(i)/L(i) = carrier/labile ligands), structurally related to the anticancer agent Cisplatin. Selected compounds have been sorted and classified by Ward's Cluster Analysis and Principal Components Analysis data-mining techniques using seventeen 1D and two 3D of such theoretical descriptors calculated at the DFT level (PCM-B3LYP/LANL2DZ/6-31G*). A rationale emerging from the study is that whereas most significant differences come from substitution of Cisplatin ligands, cis/trans isomerism, and exchange of M(II) introduce minor alterations in the electronic/geometrical structure. This provides theoretical support to the assay of transplatinum compounds as potential anticancer drugs, a fact already pointed out by empirical evidence. Similarly, the little geometrical/electronic differences triggered by switching M(II) from Pt to Pd enable us to devise a rational path to propose new compounds with expected good anticancer profiles, tuning alterations introduced by simultaneously changing both metal and ligands. Current results serve thus to enlarge the Cleare-Hoeschele guides for Pt(II) square-planar anticancer potential drugs to Pd(II) compounds, both using cis/trans scaffolds.


Assuntos
Antineoplásicos/química , Cisplatino/química , Teoria Quântica , Análise por Conglomerados , Descoberta de Drogas , Modelos Moleculares , Conformação Molecular , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA