Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EClinicalMedicine ; 71: 102490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38813445

RESUMO

Background: Urinary tract infections (UTI) affect approximately 250 million people annually worldwide. Patients often experience a cycle of antimicrobial treatment and recurrent UTI (rUTI) that is thought to be facilitated by a gut reservoir of uropathogenic Escherichia coli (UPEC). Methods: 125 patients with UTI caused by an antibiotic-resistant organism (ARO) were enrolled from July 2016 to May 2019 in a longitudinal, multi-center cohort study. Multivariate statistical models were used to assess the relationship between uropathogen colonization and recurrent UTI (rUTI), controlling for clinical characteristics. 644 stool samples and 895 UPEC isolates were interrogated for taxonomic composition, antimicrobial resistance genes, and phenotypic resistance. Cohort UTI gut microbiome profiles were compared against published healthy and UTI reference microbiomes, as well as assessed within-cohort for timepoint- and recurrence-specific differences. Findings: Risk of rUTI was not independently associated with clinical characteristics. The UTI gut microbiome was distinct from healthy reference microbiomes in both taxonomic composition and antimicrobial resistance gene (ARG) burden, with 11 differentially abundant taxa at the genus level. rUTI and non-rUTI gut microbiomes in the cohort did not generally differ, but gut microbiomes from urinary tract colonized patients were elevated in E. coli abundance 7-14 days post-antimicrobial treatment. Corresponding UPEC gut isolates from urinary tract colonizing lineages showed elevated phenotypic resistance against 11 of 23 tested drugs compared to non-colonizing lineages. Interpretation: The gut microbiome is implicated in UPEC urinary tract colonization during rUTI, serving as an ARG-enriched reservoir for UPEC. UPEC can asymptomatically colonize the gut and urinary tract, and post-antimicrobial blooms of gut E. coli among urinary tract colonized patients suggest that cross-habitat migration of UPEC is an important mechanism of rUTI. Thus, treatment duration and UPEC populations in both the urinary and gastrointestinal tract should be considered in treating rUTI and developing novel therapeutics. Funding: This work was supported in part by awards from the U.S. Centers for Disease Control and Prevention Epicenter Prevention Program (grant U54CK000482; principal investigator, V.J.F.); to J.H.K. from the Longer Life Foundation (an RGA/Washington University partnership), the National Center for Advancing Translational Sciences (grants KL2TR002346 and UL1TR002345), and the National Institute of Allergy and Infectious Diseases (NIAID) (grant K23A1137321) of the National Institutes of Health (NIH); and to G.D. from NIAID (grant R01AI123394) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant R01HD092414) of NIH. R.T.'s research was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation; grant 402733540). REDCap is Supported by Clinical and Translational Science Award (CTSA) Grant UL1 TR002345 and Siteman Comprehensive Cancer Center and NCI Cancer Center Support Grant P30 CA091842. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

2.
Cell Host Microbe ; 32(3): 298-300, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484708

RESUMO

Pyridoxine-unresponsive homocystinuria has lifelong implications for health. In this issue, Perreault and colleagues present evidence that orally delivered engineered probiotic Escherichia Coli Nissle SYNB1353 is a promising candidate in reducing homocysteine, with successful trials in mice, monkeys, and humans. However, further probiotic optimization and safety assessments are required.


Assuntos
Homocistinúria , Probióticos , Camundongos , Humanos , Animais , Homocistinúria/genética , Homocistinúria/terapia , Escherichia coli/genética , Probióticos/uso terapêutico , Piridoxina , Homocisteína
3.
J Infect Dis ; 228(3): 321-331, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37254795

RESUMO

BACKGROUND: Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and an increasingly frequent cause of opportunistic infections. Mycobacterium abscessus complex (MABC) is one of the major NTM lung pathogens that disproportionately colonize and infect the lungs of individuals with cystic fibrosis (CF). MABC infection can persist for years, and antimicrobial treatment is frequently ineffective. METHODS: We sequenced the genomes of 175 isolates longitudinally collected from 30 patients with MABC lung infection. We contextualized our cohort amidst the broader MABC phylogeny and investigated genes undergoing parallel adaptation across patients. Finally, we tested the phenotypic consequences of parallel mutations by conducting antimicrobial resistance and mercury-resistance assays. RESULTS: We identified highly related isolate pairs across hospital centers with low likelihood of transmission. We further annotated nonrandom parallel mutations in 22 genes and demonstrated altered macrolide susceptibility co-occurring with a nonsynonymous whiB1 mutation. Finally, we highlighted a 23-kb mercury-resistance plasmid whose loss during chronic infection conferred phenotypic susceptibility to organic and nonorganic mercury compounds. CONCLUSIONS: We characterized parallel genomic processes through which MABC is adapting to promote survival within the host. The within-lineage polymorphisms we observed have phenotypic effects, potentially benefiting fitness in the host at the putative detriment of environmental survival.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Mycobacterium abscessus/genética , Claritromicina , Adaptação ao Hospedeiro , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genômica
4.
Neurobiol Dis ; 152: 105292, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556539

RESUMO

BACKGROUND: Sepsis, a leading cause for intensive care unit admissions, causes both an acute encephalopathy and chronic brain dysfunction in survivors. A history of sepsis is also a risk factor for future development of dementia symptoms. Similar neuropathologic changes are associated with the cognitive decline of sepsis and Alzheimer's disease (AD), including neuroinflammation, neuronal death, and synaptic loss. Amyloid plaque pathology is the earliest pathological hallmark of AD, appearing 10 to 20 years prior to cognitive decline, and is present in 30% of people over 65. As sepsis is also more common in older adults, we hypothesized that sepsis might exacerbate amyloid plaque deposition and plaque-related injury, promoting the progression of AD-related pathology. METHODS: We evaluated whether the brain's response to sepsis modulates AD-related neurodegenerative changes by driving amyloid deposition and neuroinflammation in mice. We induced polymicrobial sepsis by cecal ligation and puncture (CLP) in APP/PS1-21 mice, a model of AD-related ß-amyloidosis. We performed CLP or sham surgery at plaque onset (2 months of age) and examined pathology 2 months after CLP in surviving mice. RESULTS: Sepsis significantly increased fibrillar amyloid plaque formation in the hippocampus of APP/PS1-21 mice. Sepsis enhanced plaque-related astrocyte activation and complement C4b gene expression in the brain, both of which may play a role in modulating amyloid formation. CLP also caused large scale changes in the gut microbiome of APP/PS1 mice, which have been associated with a pro-amyloidogenic and neuroinflammatory state. CONCLUSIONS: Our results suggest that experimental sepsis can exacerbate amyloid plaque deposition and plaque-related inflammation, providing a potential mechanism for increased dementia in older sepsis survivors.


Assuntos
Doença de Alzheimer/patologia , Microbioma Gastrointestinal , Hipocampo/patologia , Placa Amiloide/patologia , Sepse/complicações , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias/patologia , Sepse/patologia
5.
Cell Host Microbe ; 29(2): 155-157, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571442

RESUMO

Gut microbiome composition correlates with responsiveness to immune checkpoint inhibitor therapy. In a recent study in Science, Baruch et al. manipulated gut microbiome composition in patients with refractory metastatic melanoma using fecal microbiota transplants. Fecal microbiota transplant was safe and partially effective in inducing remission in refractory patients.


Assuntos
Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Humanos
6.
Clin Infect Dis ; 71(11): 2858-2868, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31832638

RESUMO

BACKGROUND: Prophylactic cotrimoxazole treatment is recommended in human immunodeficiency virus (HIV)-exposed, uninfected (HEU) infants, but the effects of this treatment on developing HEU infant gut microbiotas and resistomes are largely undefined. METHODS: We analyzed whole-metagenome sequencing data from 163 longitudinally collected stool samples from 63 HEU infants randomized to receive (n = 34; CTX-T) or to not receive (n = 29; CTX-N) prophylactic cotrimoxazole treatment. We generated taxonomic, functional pathway, and resistance gene profiles for each sample and compared microbiome signatures between the CTX-T and CTX-N infants. RESULTS: Metagenomic analysis did not reveal significant differences in taxonomic or functional pathway α-diversity between CTX-T and CTX-N infants. In contrast, resistance gene prevalence (P = .00719) and α-diversity (P = .0045) increased in CTX-T infants. These differences increased over time for both resistance gene prevalence measured by log-normalized abundance (4-month mean, 0.71 [95% confidence interval {CI}, .2-1.2] and 6-month mean, 0.85 [95% CI, .1-1.7]) and α-diversity (P = .0045). Unlike α-diversity, interindividual gut microbiome taxonomic (mean, -0.11 [95% CI, -.15 to -.077]), functional taxonomic (mean, -0.050 [95% CI, -.084 to -.017]), and resistance gene (mean, -0.13 [95% CI, -.17 to -.099]) ß-diversity decreased in CTX-T infants compared with CTX-N infants. These results are consistent with persistent antibiotic selection pressure. CONCLUSIONS: Cotrimoxazole prophylaxis in HEU infants decreased gut microbiome ß-diversity and increased antibiotic resistance gene α-diversity and prevalence. Antibiotic resistance is a growing threat, especially in low- and middle-income countries where the higher perinatal HIV exposure rates result in cotrimoxazole prophylaxis. Understanding effects from current HEU infant antibiotic prophylaxis guidelines will inform guideline revisions and efforts to reduce increasing antibiotic resistance.


Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Feminino , Microbioma Gastrointestinal/genética , HIV , Infecções por HIV/tratamento farmacológico , Humanos , Lactente , Gravidez , Prevalência , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico
7.
Crit Rev Clin Lab Sci ; 56(8): 567-585, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526274

RESUMO

Immuno-oncology has rapidly grown in the last thirty years, and immunotherapeutic agents are now approved to treat many disparate cancers. Immune checkpoint inhibitors (ICIs) are employed to augment cytotoxic anti-cancer activity by inhibiting negative regulatory elements of the immune system. Modulating the immune system to target neoplasms has improved survivability of numerous cancers in many individuals, but forecasting outcomes post therapy is difficult due to insufficient predictive biomarkers. Recently, the tumor and gastrointestinal microbiome and immune milieu have been investigated as predictors and influencers of cancer immune therapy. In this review, we discuss: (1) ways to measure the microbiome including relevant bioinformatic analyses, (2) recent developments in animal studies and human clinical trials utilizing gut microbial composition and function as biomarkers of cancer immune therapy response and toxicity, and (3) using prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplant (FMT) to modulate immune therapy. We discuss the respective benefits of 16S ribosomal RNA (rRNA) gene and shotgun metagenomic sequencing including important considerations in obtaining samples and in designing and interpreting human and animal microbiome studies. We then focus on studies discussing the differences in response to ICIs in relation to the microbiome and inflammatory mediators. ICIs cause colitis in up to 25% of individuals, and colitis is often refractory to common immunosuppressive medications. Researchers have measured microbiota composition prior to ICI therapy and correlated baseline microbiota composition with efficacy and colitis. Certain bacterial taxa that appear to enhance therapeutic benefit are also implicated in increased susceptibility to colitis, alluding to a delicate balance between pro-inflammatory tumor killing and anti-inflammatory protection from colitis. Pre-clinical and clinical models have trialed probiotic administration, e.g. Bifidobacterium spp. or FMT, to treat colitis when immune suppressive agents fail. We are excited about the future of modulating the microbiome to predict and influence cancer outcomes. Furthermore, novel therapies employed for other illnesses including bacteriophage and genetically-engineered microbes can be adapted in the future to promote increased advancements in cancer treatment and side effect management.


Assuntos
Imunoterapia , Microbiota , Neoplasias/microbiologia , Neoplasias/terapia , Animais , Ensaios Clínicos como Assunto , Transplante de Microbiota Fecal , Humanos , Neoplasias/imunologia , Resultado do Tratamento
8.
Microbiol Resour Announc ; 8(17)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023810

RESUMO

We performed Illumina whole-genome sequencing on a carbapenem-resistant Pseudomonas aeruginosa strain isolated from a cystic fibrosis patient with chronic airway colonization. The draft genome comprises 6,770,411 bp, including the carbapenemase bla NDM-1 and the extended-spectrum beta-lactamase bla PME-1 This isolate harbors 3 prophages, 14 antibiotic resistance genes, and 257 virulence genes.

10.
Drug Resist Updat ; 29: 30-46, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27912842

RESUMO

Carbapenems, our one-time silver bullet for multidrug resistant bacterial infections, are now threatened by widespread dissemination of carbapenem-resistant Enterobacteriaceae (CRE). Successful expansion of Enterobacteriaceae clonal groups and frequent horizontal gene transfer of carbapenemase expressing plasmids are causing increasing carbapenem resistance. Recent advances in genetic and phenotypic detection facilitate global surveillance of CRE diversity and prevalence. In particular, whole genome sequencing enabled efficient tracking, annotation, and study of genetic elements colocalized with carbapenemase genes on chromosomes and on plasmids. Improved characterization helps detail the co-occurrence of other antibiotic resistance genes in CRE isolates and helps identify pan-drug resistance mechanisms. The novel ß-lactamase inhibitor, avibactam, combined with ceftazidime or aztreonam, is a promising CRE treatment compared to current colistin or tigecycline regimens. To halt increasing CRE-associated morbidity and mortality, we must continue quality, cooperative monitoring and urgently investigate novel treatments.


Assuntos
Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Carbapenêmicos/farmacologia , Infecções por Enterobacteriaceae/transmissão , Resistência beta-Lactâmica/genética , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/patogenicidade , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Monitoramento Epidemiológico , Expressão Gênica , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Replicon , beta-Lactamases/classificação , beta-Lactamases/metabolismo
11.
Evolution ; 70(12): 2669-2677, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27704542

RESUMO

Biologists have taken the concept of organism largely for granted. However, advances in the study of chimerism, symbiosis, bacterial-eukaryote associations, and microbial behavior have prompted a redefinition of organisms as biological entities exhibiting low conflict and high cooperation among their parts. This expanded view identifies organisms in evolutionary time. However, the ecological processes, mechanisms, and traits that drive the formation of organisms remain poorly understood. Recognizing that organismality can be context dependent, we advocate elucidating the ecological contexts under which entities do or do not act as organisms. Here we develop a "contextual organismality" framework and provide examples of entities, such as honey bee colonies, tumors, and bacterial swarms, that can act as organisms under specific life history, resource, or other ecological circumstances. We suggest that context dependence may be a stepping stone to the development of increased organismal unification, as the most integrated biological entities generally show little context dependence. Recognizing that organismality is contextual can identify common patterns and testable hypotheses across different entities. The contextual organismality framework can illuminate timeless as well as pressing issues in biology, including topics as disparate as cancer emergence, genomic conflict, evolution of symbiosis, and the role of the microbiota in impacting host phenotype.


Assuntos
Fenômenos Fisiológicos Bacterianos , Abelhas/fisiologia , Evolução Biológica , Características de História de Vida , Neoplasias/fisiopatologia , Animais , Ecologia , Neoplasias/etiologia , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA