RESUMO
The viral resistance of marketed antiviral drugs including the emergence of new viral resistance of the only marketed CCR5 entry inhibitor, maraviroc, makes it necessary to develop new CCR5 allosteric inhibitors. A mutagenesis/modeling approach was used (a) to remove the potential hERG liability in an otherwise very promising series of compounds and (b) to design a new class of compounds with an unique mutant fingerprint profile depending on residues in the N-terminus and the extracellular loop 2. On the basis of residues, which were identified by mutagenesis as key interaction sites, binding modes of compounds were derived and utilized for compound design in a prospective manner. The compounds were then synthesized, and in vitro evaluation not only showed that they had good antiviral potency but also fulfilled the requirement of low hERG inhibition, a criterion necessary because a potential approved drug would be administered chronically. This work utilized an interdisciplinary approach including medicinal chemistry, molecular biology, and computational chemistry merging the structural requirements for potency with the requirements of an acceptable in vitro profile for allosteric CCR5 inhibitors. The obtained mutant fingerprint profiles of CCR5 inhibitors were used to translate the CCR5 allosteric binding site into a general pharmacophore, which can be used for discovering new inhibitors.
Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Ureia/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Antagonistas dos Receptores CCR5 , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Mutagênese , Estereoisomerismo , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/químicaRESUMO
Curcumin, a major constituent of the spice turmeric, is a nutriceutical compound reported to possess therapeutic properties against a variety of diseases ranging from cancer to cystic fibrosis. In whole-cell patch-clamp experiments on bovine adrenal zona fasciculata (AZF) cells, curcumin reversibly inhibited the Kv1.4K+ current with an IC50 of 4.4 microM and a Hill coefficient of 2.32. Inhibition by curcumin was significantly enhanced by repeated depolarization; however, this agent did not alter the voltage-dependence of steady-state inactivation. Kv1.4 is the first voltage-gated ion channel demonstrated to be inhibited by curcumin. Furthermore, these results identify curcumin as one of the most potent antagonists of these K+ channels identified thus far. It remains to be seen whether any of the therapeutic actions of curcumin might originate with its ability to inhibit Kv1.4 or other voltage-gated K+ channel.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Curcumina/farmacologia , Canal de Potássio Kv1.4/antagonistas & inibidores , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Bovinos , Células Cultivadas , Concentração Inibidora 50 , Técnicas de Patch-ClampRESUMO
Bovine adrenocortical cells express bTREK-1 K+ channels that set the resting membrane potential (V(m)) and couple angiotensin II (AngII) and adrenocorticotropic hormone (ACTH) receptors to membrane depolarization and corticosteroid secretion. In this study, it was discovered that AngII inhibits bTREK-1 by separate Ca2+- and ATP hydrolysis-dependent signaling pathways. When whole cell patch clamp recordings were made with pipette solutions that support activation of both Ca2+- and ATP-dependent pathways, AngII was significantly more potent and effective at inhibiting bTREK-1 and depolarizing adrenal zona fasciculata cells, than when either pathway is activated separately. External ATP also inhibited bTREK-1 through these two pathways, but ACTH displayed no Ca2+-dependent inhibition. AngII-mediated inhibition of bTREK-1 through the novel Ca2+-dependent pathway was blocked by the AT1 receptor antagonist losartan, or by including guanosine-5'-O-(2-thiodiphosphate) in the pipette solution. The Ca2+-dependent inhibition of bTREK-1 by AngII was blunted in the absence of external Ca2+ or by including the phospholipase C antagonist U73122, the inositol 1,4,5-trisphosphate receptor antagonist 2-amino-ethoxydiphenyl borate, or a calmodulin inhibitory peptide in the pipette solution. The activity of unitary bTREK-1 channels in inside-out patches from adrenal zona fasciculata cells was inhibited by application of Ca2+ (5 or 10 microM) to the cytoplasmic membrane surface. The Ca2+ ionophore ionomycin also inhibited bTREK-1 currents through channels expressed in CHO-K1 cells. These results demonstrate that AngII and selected paracrine factors that act through phospholipase C inhibit bTREK-1 in adrenocortical cells through simultaneous activation of separate Ca2+- and ATP hydrolysis-dependent signaling pathways, providing for efficient membrane depolarization. The novel Ca2+-dependent pathway is distinctive in its lack of ATP dependence, and is clearly different from the calmodulin kinase-dependent mechanism by which AngII modulates T-type Ca2+ channels in these cells.