Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e24551, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318045

RESUMO

Cervical cancer is a major health problem of women. Hormone therapy, via aromatase inhibition, has been proposed as a promising way of blocking estrogen production as well as treating the progression of estrogen-dependent cancer. To overcome the challenging complexities of costly drug design, in-silico strategy, integrating Structure-Based Drug Design (SBDD) and Ligand-Based Drug Design (LBDD), was applied to large representative databases of 39 quinazoline and thioquinazolinone compound derivatives. Quantum chemical and physicochemical descriptors have been investigated using density functional theory (DFT) and MM2 force fields, respectively, to develop 2D-QSAR models, while CoMSIA and CoMFA descriptors were used to build 3D-QSAR models. The robustness and predictive power of the reliable models were verified, via several validation methods, leading to the design of 6 new drug-candidates. Afterwards, 2 ligands were carefully selected using virtual screening methods, taking into account the applicability domain, synthetic accessibility, and Lipinski's criteria. Molecular docking and pharmacophore modelling studies were performed to examine potential interactions with aromatase (PDB ID: 3EQM). Finally, the ADMET properties were investigated in order to select potential drug-candidates against cervical cancer for experimental in vitro and in vivo testing.

2.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257339

RESUMO

In this study, using the Comparative Molecular Field Analysis (CoMFA) approach, the structure-activity relationship of 33 small quinoline-based compounds with biological anti-gastric cancer activity in vitro was analyzed in 3D space. Once the 3D geometric and energy structure of the target chemical library has been optimized and their steric and electrostatic molecular field descriptions computed, the ideal 3D-QSAR model is generated and matched using the Partial Least Squares regression (PLS) algorithm. The accuracy, statistical precision, and predictive power of the developed 3D-QSAR model were confirmed by a range of internal and external validations, which were interpreted by robust correlation coefficients (RTrain2=0.931; Qcv2=0.625; RTest2=0.875). After carefully analyzing the contour maps produced by the trained 3D-QSAR model, it was discovered that certain structural characteristics are beneficial for enhancing the anti-gastric cancer properties of Quinoline derivatives. Based on this information, a total of five new quinoline compounds were developed, with their biological activity improved and their drug-like bioavailability measured using POM calculations. To further explore the potential of these compounds, molecular docking and molecular dynamics simulations were performed in an aqueous environment for 100 nanoseconds, specifically targeting serine/threonine protein kinase. Overall, the new findings of this study can serve as a starting point for further experiments with a view to the identification and design of a potential next-generation drug for target therapy against cancer.


Assuntos
Antineoplásicos , Quinolinas , Neoplasias Gástricas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Quinolinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Neoplasias Gástricas/tratamento farmacológico
3.
J Biomol Struct Dyn ; : 1-18, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217880

RESUMO

Tropomyosin receptor kinase (TRKs) enzymes are responsible for cancers associated with the neurotrophic tyrosine kinase receptor gene fusion and are identified as effective targets for anticancer drug discovery. A series of small-molecule indolin-2-one derivatives showed remarkable biological activity against TRKs enzymatic activity. These small molecules could have an excellent profile for pharmaceutical application in the treatment of cancers caused by TRKs activity. The aim of this study is to modify the structure of these molecules to obtain new molecules with improved TRK inhibitory activity and pharmacokinetic properties favorable to the design of new drugs. Based on these series, we carried out a 3D-QSAR study. As a result, robust and reliable CoMFA and CoMSIA models are developed and applied to the design of 11 new molecules. These new molecules have a biological activity superior to the most active molecule in the starting series. The eleven designed molecules are screened using drug-likeness, ADMET proprieties, molecular docking, and MM-GBSA filters. The results of this screening identified the T1, T3, and T4 molecules as the best candidates for strong inhibition of TRKs enzymatic activity. In addition, molecular dynamics simulations are performed for TRK free and complexed with ligands T1, T3, and T4 to evaluate the stability of ligand-protein complexes over the simulation time. On the other hand, we proposed experimental synthesis routes for these newly designed molecules. Finally, the designed molecules T1, T2, and T3 have great potential to become reliable candidates for the conception of new drug inhibitors of TRKs.Communicated by Ramaswamy H. Sarma.

4.
Heliyon ; 9(4): e15545, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128337

RESUMO

This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.

5.
ACS Omega ; 8(4): 4294-4319, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743017

RESUMO

The abnormal expression of the c-Met tyrosine kinase has been linked to the proliferation of several human cancer cell lines, including non-small-cell lung cancer (NSCLC). In this context, the identification of new c-Met inhibitors based on heterocyclic small molecules could pave the way for the development of a new cancer therapeutic pathway. Using multiple linear regression (MLR)-quantitative structure-activity relationship (QSAR) and artificial neural network (ANN)-QSAR modeling techniques, we look at the quantitative relationship between the biological inhibitory activity of 40 small molecules derived from cyclohexane-1,3-dione and their topological, physicochemical, and electronic properties against NSCLC cells. In this regard, screening methods based on QSAR modeling with density-functional theory (DFT) computations, in silico pharmacokinetic/pharmacodynamic (ADME-Tox) modeling, and molecular docking with molecular electrostatic potential (MEP) and molecular mechanics-generalized Born surface area (MM-GBSA) computations were used. Using physicochemical (stretch-bend, hydrogen bond acceptor, Connolly molecular area, polar surface area, total connectivity) and electronic (total energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels) molecular descriptors, compound 6d is identified as the optimal scaffold for drug design based on in silico screening tests. The computer-aided modeling developed in this study allowed us to design, optimize, and screen a new class of 36 small molecules based on cyclohexane-1,3-dione as potential c-Met inhibitors against NSCLC cell growth. The in silico rational drug design approach used in this study led to the identification of nine lead compounds for NSCLC therapy via c-Met protein targeting. Finally, the findings are validated using a 100 ns series of molecular dynamics simulations in an aqueous environment on c-Met free and complexed with samples of the proposed lead compounds and Foretinib drug.

6.
J Biomol Struct Dyn ; 41(16): 7712-7724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36106982

RESUMO

FLT3 is considered a potential target of acute myeloid leukemia therapy. In this study, we applied a computer-aided methodology unifying molecular docking and pharmacophore screening to identify potent inhibitors against FLT3. To investigate the pharmacophore area and binding mechanism of FLT3, the reported co-crystallized Gilteritinib ligand was docked into the active site using Glide XP. Based on the docking results, we identified structure-based pharmacophore characteristics resistant to potent FLT3 inhibitors. The best hypothesis was corroborated using test and decoy sets, and the verified hypo was utilized to screen the chemical database. The hits from the pharmacophore-based screening were then screened again using a structure-based method that included molecular docking at various precisions; the selected molecules were further examined and refined using drug-like filters and ADMET analysis. Finally, two hits were picked out for molecular dynamic simulation. The results showed two hits were expected to have potent inhibitory activity and excellent ADMET characteristics, and they might be used as new leads in the development of FLT3 inhibitors.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; 41(16): 7768-7785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36120976

RESUMO

Small molecules such as 4-phenoxypyridine derivatives have remarkable inhibitory activity against c-Met enzymatic activity and proliferation of cancer cell lines. Since there is a relationship between structure and biological activity of these molecules, these little compounds may have great potential for clinical pharmaceutical use against various types of cancer caused by c-Met activity. The purpose of this study was to remodel the structures of 4-phenoxypyridine derivatives to achieve strong inhibitory activity against c-Met and provide favorable pharmacokinetic properties for drug design and discovery. Therefore, this paper describes the structure-activity relationship and the rationalization of appropriate pharmacophore sites to improve the biological activity of the investigated molecules, based on bioinformatics techniques represented by a computer-aided drug design approach. Accordingly, robust and reliable 3D-QSAR models were developed based on CoMFA and CoMSIA techniques. As a result, 46 lead molecules were designed and their biological and pharmacokinetic activities were predicted in silico. Screening filters by 3D-QSAR, Molecular Docking, drug-like and ADME-Tox identified the computer-designed compounds P54 and P55 as the best candidates to achieve high inhibition of c-Met enzymatic activity compared to the synthesized template compound T14. Finally, through molecular dynamics simulations, the structural properties and dynamics of c-Met free and complex (PDB code: 3LQ8) in the presence of 4-phenoxypyridine-derived compounds in an aqueous environment are discussed. Overall, the rectosynthesis of the designed drug inhibitors (P54 and P55) and their in vitro and in vivo bioactivity evaluation may be attractive for design and discovery of novel drug effective to inhibit c-Met enzymatic activity.Communicated by Ramaswamy H. Sarma.

8.
Heliyon ; 7(7): e07463, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34296007

RESUMO

A quantitative structure-activity relationship (QSAR) study is performed on 48 novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2 derivatives as anticancer agents capable of inhibiting c-Met receptor tyrosine kinase. The present study is conducted using multiple linear regression, multiple nonlinear regression and artificial neural networks. Three QSAR models are developed after partitioning the database into two sets (training and test) via the k-means method. The obtained values of the correlation coefficients by the three developed QSAR models are 0.90, 0.91 and 0.92, respectively. The resulting models are validated by using the external validation, leave-one-out cross-validation, Y-randomization test, and applicability domain methods. Moreover, we evaluated the drug-likeness properties of seven selected molecules based on their observed high activity to inhibit the c-Met receptor. The results of the evaluation showed that three of the seven compounds present drug-like characteristics. In order to identify the important active sites for the inhibition of the c-Met receptor responsible for the development of cancer cell lines, the crystallized form of the Crizotinib-c-Met complex (PDB code: 2WGJ) is used. These sites are used as references in the molecular docking test of the three selected molecules to identify the most suitable molecule for use as a new c-Met inhibitor. A comparative study is conducted based on the evaluation of the predicted properties of ADMET in silico between the candidate molecule and the Crizotinib inhibitor. The comparison results show that the selected molecule can be used as new anticancer drug candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA