Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 610(7931): 356-365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198802

RESUMO

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células Estreladas do Fígado , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/patologia
2.
J Hepatol ; 74(3): 613-626, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33038431

RESUMO

BACKGROUND & AIMS: The hepatocyte Notch pathway is a pathogenic factor in non-alcoholic steatohepatitis (NASH)-associated fibrosis, but its role in hepatocellular carcinoma (HCC) is less well defined. Herein, we aimed to characterize the molecular and clinical features of Notch-active human HCC, and to investigate the mechanisms by which Notch affects NASH-driven HCC. METHODS: Using a 14-gene Notch score, we stratified human HCCs from multiple comprehensively profiled datasets. We performed gene set enrichment analyses to compare Notch-active HCCs with published HCC subtype signatures. Next, we sorted Notch-active hepatocytes from Notch reporter mice for RNA sequencing and characterized Notch-active tumors in an HCC model combining a carcinogen and a NASH-inducing diet. We used genetic mouse models to manipulate hepatocyte Notch to investigate the sufficiency and necessity of Notch in NASH-driven tumorigenesis. RESULTS: Notch-active signatures were found in ~30% of human HCCs that transcriptionally resemble cholangiocarcinoma-like HCC, exhibiting a lack of activating CTNNB1 (ß-catenin) mutations and a generally poor prognosis. Endogenous Notch activation in hepatocytes is associated with repressed ß-catenin signaling and hepatic metabolic functions, in lieu of increased interactions with the extracellular matrix in NASH. Constitutive hepatocyte Notch activation is sufficient to induce ß-catenin-inactive HCC in mice with NASH. Notch and ß-catenin show a pattern of mutual exclusivity in carcinogen-induced HCC; in this mouse model, chronic blockade of Notch led to ß-catenin-dependent tumor development. CONCLUSIONS: Notch activity characterizes a distinct HCC molecular subtype with unique histology and prognosis. Sustained Notch signaling in chronic liver diseases can drive tumor formation without acquiring specific genomic driver mutations. LAY SUMMARY: The Notch signaling pathway is known to be involved in the pathogenesis of liver fibrosis. However, its role in liver cancer has not been well defined. Herein, we show that Notch activity is increased in a subset of liver cancers and is associated with poor outcomes. We also used a mouse model to show that aberrant Notch activity can drive cancer progression in obese mice.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Receptores Notch/genética , Via de Sinalização Wnt/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Feminino , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prognóstico , Receptores Notch/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-32595605

RESUMO

When exposed to cold temperatures, mice increase their thermogenic capacity by an expansion of brown adipose tissue mass and the formation of brite/beige adipocytes in white adipose tissue depots. However, the process of the transcriptional changes underlying the conversion of a phenotypic white to brite/beige adipocytes is only poorly understood. By analyzing transcriptome profiles of inguinal adipocytes during cold exposure and in mouse models with a different propensity to form brite/beige adipocytes, we identified ESRRG and PERM1 as modulators of this process. The production of heat by mitochondrial uncoupled respiration is a key feature of brite/beige compared to white adipocytes and we show here that both candidates are involved in PGC1α transcriptional network to positively regulate mitochondrial capacity. Moreover, we show that an increased expression of ESRRG or PERM1 supports the formation of brown or brite/beige adipocytes in vitro and in vivo. These results reveal that ESRRG and PERM1 are early induced in and important regulators of brite/beige adipocyte formation.


Assuntos
Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Receptores de Estrogênio/metabolismo , Termogênese , Animais , Linhagem Celular , Temperatura Baixa , Masculino , Camundongos Endogâmicos C57BL , Transcriptoma
4.
PLoS One ; 11(7): e0158819, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391331

RESUMO

BACKGROUND: The development of hepatocellular carcinoma (HCC) is a common consequence of advanced liver fibrosis but the interactions between fibrogenesis and carcinogenesis are still poorly understood. Recently it has been shown that HCC promotion depends on Toll-like receptor (TLR) 4. Pre-cancerogenous events can be modelled in mice by the administration of a single dose of diethylnitrosamine (DEN), with HCC formation depending amongst others on interleukin (IL) 6 production. Mice lacking the hepatocanalicular phosphatidylcholine transporter ABCB4 develop liver fibrosis spontaneously, resemble patients with sclerosing cholangitis due to mutations of the orthologous human gene, and represent a valid model to study tumour formation in pre-injured cholestatic liver. The aim of this study was to investigate DEN-induced liver injury in TLR4-deficient mice with biliary fibrosis. METHODS: ABCB4-deficient mice on the FVB/NJ genetic background were crossed to two distinct genetic backgrounds (TLR4-sufficient C3H/HeN and TLR4-deficient C3H/HeJ) for more than 10 generations. The two congenic knockout and the two corresponding wild-type mouse lines were treated with a single dose of DEN for 48 hours. Phenotypic differences were assessed by measuring hepatic collagen contents, inflammatory markers (ALT, CRP, IL6) as well as hepatic apoptosis (TUNEL) and proliferation (Ki67) rates. RESULTS: Hepatic collagen accumulation is significantly reduced in ABCB4-/-:TLR4-/-double-deficient mice. After DEN challenge, apoptosis, proliferation and inflammatory markers are decreased in TLR4-deficient in comparison to TLR4-sufficient mice. When combining ABCB4 and TLR4 deficiency with DEN treatment, hepatic IL6 expression and proliferation rates are lowest in fibrotic livers from the double-deficient line. Consistent with these effects, selective digestive tract decontamination in ABCB4-/- mice also led to reduced tumor size and number after DEN. CONCLUSION: This study demonstrates that liver injury upon DEN challenge depends on pre-existing fibrosis and genetic background. The generation of ABCB4-/: TLR4-/- double-deficient mice illustrates that TLR4-deficiency protects against hepatic injury in a preclinical mouse model of chronic liver disease.


Assuntos
Carcinoma Hepatocelular , Dietilnitrosamina/toxicidade , Cirrose Hepática , Neoplasias Hepáticas Experimentais , Proteínas de Neoplasias/deficiência , Lesões Pré-Cancerosas , Receptor 4 Toll-Like/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
5.
Gastroenterology ; 150(3): 720-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26627606

RESUMO

BACKGROUND & AIMS: Transforming growth factor-ß (TGFß) exerts key functions in fibrogenic cells, promoting fibrosis development in the liver and other organs. In contrast, the functions of TGFß in liver epithelial cells are not well understood, despite their high level of responsiveness to TGFß. We sought to determine the contribution of epithelial TGFß signaling to hepatic fibrogenesis and carcinogenesis. METHODS: TGFß signaling in liver epithelial cells was inhibited by albumin-Cre-, K19-CreERT-, Prom1-CreERT2-, or AAV8-TBG-Cre-mediated deletion of the floxed TGFß receptor II gene (Tgfbr2). Liver fibrosis was induced by carbon tetrachloride, bile duct ligation, or disruption of the multidrug-resistance transporter 2 gene (Mdr2). Hepatocarcinogenesis was induced by diethylnitrosamine or hepatic deletion of PTEN. RESULTS: Deletion of Tgfbr2 from liver epithelial cells did not alter liver injury, toxin-induced or biliary fibrosis, or diethylnitrosamine-induced hepatocarcinogenesis. In contrast, epithelial deletion of Tgfbr2 promoted tumorigenesis and reduced survival of mice with concomitant hepatic deletion of Pten, accompanied by an increase in tumor number and a shift from hepatocellular carcinoma to cholangiocarcinoma. Surprisingly, both hepatocyte- and cholangiocyte-specific deletion of Pten and Tgfbr2 promoted the development of cholangiocarcinoma, but with different latencies. The prolonged latency and the presence of hepatocyte-derived cholangiocytes after AAV8-TBG-Cre-mediated deletion of Tgfbr2 and Pten indicated that cholangiocarcinoma might arise from hepatocyte-derived cholangiocytes in this model. Pten deletion resulted in up-regulation of Tgfbr2, and deletion of Tgfbr2 increased cholangiocyte but not hepatocyte proliferation, indicating that the main function of epithelial TGFBR2 is to restrict cholangiocyte proliferation. CONCLUSIONS: Epithelial TGFß signaling does not contribute to the development of liver fibrosis or formation of hepatocellular carcinomas in mice, but restricts cholangiocyte proliferation to prevent cholangiocarcinoma development, regardless of its cellular origin.


Assuntos
Neoplasias dos Ductos Biliares/prevenção & controle , Ductos Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colangiocarcinoma/prevenção & controle , Células Epiteliais/metabolismo , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares/patologia , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Dietilnitrosamina , Células Epiteliais/patologia , Predisposição Genética para Doença , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Fatores de Tempo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
6.
Biochim Biophys Acta ; 1841(12): 1648-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25251292

RESUMO

We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPARγ; ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER stress, as measured by upregulation of CHOP, ATF6 and GRP78 gene expression and phosphorylation of eukaryotic initiation factor 2a (EIF2a). Both ACSL1 and PPARγ adenovirus-mediated expression augmented neutral lipid accumulation and reduced palmitate-induced upregulation of ER stress markers to levels similar to those in the oleate and control treatment groups. This suggests that increased channeling of non-esterified free fatty acids (NEFA) towards storage in the form of neutral lipids in lipid droplets protects against palmitate-induced ER stress. Overexpression of ATGL in cells incubated with oleate-containing medium increased NEFA release and stimulated expression of ER stress markers. Thus, inefficient creation of lipid droplets as well greater release of stored lipids induces ER stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos/toxicidade , Modelos Biológicos , Miócitos Cardíacos/patologia , Triglicerídeos/toxicidade , Acetato-CoA Ligase/metabolismo , Adulto , Biomarcadores/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Palmitatos/toxicidade
7.
Cell Metab ; 19(3): 539-47, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24606906

RESUMO

In vitro studies have demonstrated a critical role for high-mobility group box 1 (HMGB1) in autophagy and the autophagic clearance of dysfunctional mitochondria, resulting in severe mitochondrial fragmentation and profound disturbances of mitochondrial respiration in HMGB1-deficient cells. Here, we investigated the effects of HMGB1 deficiency on autophagy and mitochondrial function in vivo, using conditional Hmgb1 ablation in the liver and heart. Unexpectedly, deletion of Hmgb1 in hepatocytes or cardiomyocytes, two cell types with abundant mitochondria, did not alter mitochondrial structure or function, organ function, or long-term survival. Moreover, hepatic autophagy and mitophagy occurred normally in the absence of Hmgb1, and absence of Hmgb1 did not significantly affect baseline and glucocorticoid-induced hepatic gene expression. Collectively, our findings suggest that HMGB1 is dispensable for autophagy, mitochondrial quality control, the regulation of gene expression, and organ function in the adult organism.


Assuntos
Autofagia , Proteína HMGB1/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Metabolismo Energético , Expressão Gênica , Proteína HMGB1/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , RNA Mensageiro/metabolismo
8.
Hepatology ; 58(4): 1461-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23553591

RESUMO

UNLABELLED: Although it is well established that hepatic macrophages play a crucial role in the development of liver fibrosis, the underlying mechanisms remain largely elusive. Moreover, it is not known whether other mononuclear phagocytes such as dendritic cells (DCs) contribute to hepatic stellate cell (HSC) activation and liver fibrosis. We show for the first time that hepatic macrophages enhance myofibroblast survival in a nuclear factor kappa B (NF-κB)-dependent manner and thereby promote liver fibrosis. Microarray and pathway analysis revealed no induction of HSC activation pathways by hepatic macrophages but a profound activation of the NF-κB pathway in HSCs. Conversely, depletion of mononuclear phagocytes during fibrogenesis in vivo resulted in suppressed NF-κB activation in HSCs. Macrophage-induced activation of NF-κB in HSCs in vitro and in vivo was mediated by interleukin (IL)-1 and tumor necrosis factor (TNF). Notably, IL-1 and TNF did not promote HSC activation but promoted survival of activated HSCs in vitro and in vivo and thereby increased liver fibrosis, as demonstrated by neutralization in coculture experiments and genetic ablation of IL-1 and TNF receptor in vivo. Coculture and in vivo ablation experiments revealed only a minor contribution to NF-κB activation in HSCs by DCs, and no contribution of DCs to liver fibrosis development, respectively. CONCLUSION: Promotion of NF-κB-dependent myofibroblast survival by macrophages but not DCs provides a novel link between inflammation and fibrosis.


Assuntos
Células Dendríticas/patologia , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Fígado/patologia , Macrófagos/patologia , Animais , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Modelos Animais de Doenças , Deleção de Genes , Interleucina-1/deficiência , Interleucina-1/genética , Interleucina-1/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/fisiologia
9.
Cancer Cell ; 21(4): 504-16, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22516259

RESUMO

Increased translocation of intestinal bacteria is a hallmark of chronic liver disease and contributes to hepatic inflammation and fibrosis. Here we tested the hypothesis that the intestinal microbiota and Toll-like receptors (TLRs) promote hepatocellular carcinoma (HCC), a long-term consequence of chronic liver injury, inflammation, and fibrosis. Hepatocarcinogenesis in chronically injured livers depended on the intestinal microbiota and TLR4 activation in non-bone-marrow-derived resident liver cells. TLR4 and the intestinal microbiota were not required for HCC initiation but for HCC promotion, mediating increased proliferation, expression of the hepatomitogen epiregulin, and prevention of apoptosis. Gut sterilization restricted to late stages of hepatocarcinogenesis reduced HCC, suggesting that the intestinal microbiota and TLR4 represent therapeutic targets for HCC prevention in advanced liver disease.


Assuntos
Intestinos/microbiologia , Hepatopatias/microbiologia , Neoplasias Hepáticas Experimentais/microbiologia , Receptor 4 Toll-Like/fisiologia , Animais , Apoptose/genética , Translocação Bacteriana , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Epirregulina , Humanos , Hepatopatias/complicações , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/genética , Células Tumorais Cultivadas
10.
Gut ; 60(9): 1260-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21278145

RESUMO

OBJECTIVE: Hepatic stellate cells (HSCs) contain a number of bioactive metabolites or their precursors including retinoids in their characteristic lipid droplets. The loss of lipid droplets and retinoids is a hallmark of HSC activation, but it remains unclear whether this loss promotes HSC activation, liver fibrogenesis or carcinogenesis. DESIGN: Spontaneous and experimental fibrogenesis as well as a diethylnitrosamine-induced hepatocarcinogenesis were investigated in lecithin-retinol acyltransferase (LRAT)-deficient mice which lack retinoid-containing lipids droplets in their HSCs. RESULTS: Following HSC activation, LRAT expression was rapidly lost, emphasising its importance in lipid droplet biology in HSCs. Surprisingly, there was no difference in fibrosis induced by bile duct ligation (BDL) or by eight injections of carbon tetrachloride (CCl4) between wild-type and LRAT-deficient mice. To exclude the possibility that the effects on fibrogenesis were missed due to the rapid downregulation of LRAT following HSC activation, acute as well as spontaneous liver fibrosis was investigated. However, there was no increased fibrosis in 3-, 8- and 12-month-old LRAT-deficient mice and in LRAT-deficient mice after a single injection of CCl4 compared with wild-type mice. To determine whether the absence of retinoids in HSCs affects hepatocarcinogenesis, wild-type and LRAT-deficient mice were injected with diethylnitrosamine. LRAT deficiency decreased diethylnitrosamine-induced injury and tumour load and increased the expression of the retinoic acid responsive genes Cyp26a1, RARb and p21, suggesting that the lower tumour load of LRAT-deficient mice was a result of increased retinoid signalling and subsequent p21-mediated inhibition of proliferation. CONCLUSIONS: The absence of retinoid-containing HSC lipid droplets does not promote HSC activation but reduces hepatocarcinogenesis.


Assuntos
Aciltransferases/deficiência , Transformação Celular Neoplásica/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas Experimentais/prevenção & controle , Aciltransferases/metabolismo , Animais , Tetracloreto de Carbono , Transformação Celular Neoplásica/patologia , Células Cultivadas , Dietilnitrosamina , Regulação para Baixo , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA