Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(10): 6212-6231, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36849711

RESUMO

Cell division is driven by nucleic acid metabolism, and thymidylate synthase (TYMS) catalyzes a rate-limiting step in nucleotide synthesis. As a result, thymidylate synthase has emerged as a critical target in chemotherapy. 5-Fluorouracil (5-FU) is currently being used to treat a wide range of cancers, including breast, pancreatic, head and neck, colorectal, ovarian, and gastric cancers The objective of this study was to establish a new methodology for the low-cost, one-pot synthesis of uracil derivatives (UD-1 to UD-5) and to evaluate their therapeutic potential in BC cells. One-pot organic synthesis processes using a single solvent were used for the synthesis of drug analogues of Uracil. Integrated bioinformatics using GEPIA2, UALCAN, and KM plotter were utilized to study the expression pattern and prognostic significance of TYMS, the key target gene of 5-fluorouracil in breast cancer patients. Cell viability, cell proliferation, and colony formation assays were used as in vitro methods to validate the in silico lead obtained. BC patients showed high levels of thymidylate synthase, and high expression of thymidylate synthase was found associated with poor prognosis. In silico studies indicated that synthesized uracil derivatives have a high affinity for thymidylate synthase. Notably, the uracil derivatives dramatically inhibited the proliferation and colonization potential of BC cells in vitro. In conclusion, our study identified novel uracil derivatives as promising therapeutic options for breast cancer patients expressing the augmented levels of thymidylate synthase.


Assuntos
Neoplasias da Mama , Uracila , Humanos , Feminino , Uracila/farmacologia , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Inibidores Enzimáticos/farmacologia , Neoplasias da Mama/tratamento farmacológico
2.
Cancer Chemother Pharmacol ; 87(2): 147-158, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33420940

RESUMO

Breast cancer is presently the most predominant tumor type and the second leading cause of tumor-related deaths among women. Although advancements in diagnosis and therapeutics have momentously improved, chemoresistance remains an important challenge. Tumors oppose chemotherapeutic agents through a variety of mechanisms, with studies revealing that the tumor microenvironment (TME) is central to this process. The components of TME including stromal cells, immune cells, and non-stromal factors on exposure to chemotherapy promote the acquisition of resistant phenotype. Consequently, limited targeting of tumor cells leads to tumor recurrence after chemotherapy. Here, in this article, we summarize how TME alters chemotherapy responses in breast cancer. Furthermore, the role of different stromal cells viz., CAFs, TAMs, MSCs, endothelial cells, and cancer stem cells (CSC) in breast cancer chemoresistance is discussed in greater detail.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27229631

RESUMO

Dichloroethane is widely used as a solvent, degreasing agent and in a variety of commercial products, and is known for being a ubiquitous contaminant in the environment. Important sources principally include the emissions from industrial processes, improper consumption, storage, and disposal methods. In view of the fact that the mechanism of its genotoxicity has not been satisfactorily elucidated, the acute in vivo toxicological impact is assessed in Rattus norvegicus. A systematic investigation has been made involving the use of conventional methods along with molecular and flow cytometric approaches. The micronucleus and chromosomal aberration frequencies were significantly elevated in bone marrow cells exposed to three concentrations at multiple treatment durations indicating positive time- and dose-response relationships. The mitotic index significantly decreased in similar concentrations in contrast to normal control. Separate studies were performed on blood cells for comet assay. It revealed dichloroethane-induced DNA damage in all exposures readily explainable in a dose- and time-dependent manner. Recent molecular techniques were further employed using leukocytes for the cell apoptosis/cycle and mitochondrial membrane potential employing propidium iodide staining and rhodamine-123, respectively. The effect on mitochondrial membrane permeability, cell cycle phases, and the DNA damage was analyzed through flow cytometry. These indicators revealed dichloroethane treatment decreased the mitochondrial membrane potential, affected the cell cycle, and confirmed the DNA damage, leading to apoptosis of the cells of the immune system responsible for immunotoxic effects of dichloroethane on rat leukocytes.


Assuntos
Dicloretos de Etileno/toxicidade , Substâncias Perigosas/toxicidade , Sistema Imunitário/efeitos dos fármacos , Animais , Apoptose , Células da Medula Óssea , Ciclo Celular , Aberrações Cromossômicas , Ensaio Cometa , Dano ao DNA , Citometria de Fluxo , Potencial da Membrana Mitocondrial , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA