Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608982

RESUMO

We developed a facile method for the fabrication of a biodegradable delivery system composed of two blocks: curdlan and curcumin. This was achieved by chemical functionalization of curdlan through tosylation, amination followed by complexation with curcumin. A comprehensive evaluation of structural characterization and component stability showed that cur-cum complex exhibited better anticancer properties with enhanced thermal properties. The cur-cum complex shows pH sensitive sustained release behaviour with higher release at acidic pH and kinetic data of drug release follows the Korsmeyer-Peppas model. The cur-cum complex has ability to block the proliferation of the MCF-7 cell line as revealed by MTT assay which showed increased toxicity of cur-cum complex against these cell lines. The results obtained from western blot analysis demonstrated that the co-administration of cur and cum effectively induced apoptosis in MCF-7 cells. This effect was observed by a considerable upregulation of the Bcl-2/Bax ratio, a decline in mRNA expression of LDHA, level of lactate and LDH activity. The results clearly depict the role of functionalized curdlan as efficient carrier for curcumin delivery with prolonged, sustained release and enhanced bioavailability, thereby improving the overall anticancer activity.


Assuntos
Apoptose , Neoplasias da Mama , Curcumina , Liberação Controlada de Fármacos , beta-Glucanas , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , beta-Glucanas/química , beta-Glucanas/farmacologia , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Células MCF-7 , Feminino , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Proliferação de Células/efeitos dos fármacos , Concentração de Íons de Hidrogênio
2.
Bioorg Chem ; 87: 773-782, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30974300

RESUMO

Development of new chemotherapeutic agents to treat microbial infections and recurrent cancers is of pivotal importance. Metal based drugs particularly ruthenium complexes have the uniqueness and desired properties that make them suitable candidates for the search of potential chemotherapeutic agents. In this study, two mixed ligand Ru(III) complexes [Ru(Cl)2(SB)(Phen] (RC-1) and [Ru(Cl)2(SB)(Bipy)] (RC-2) were synthesised and characterized by elemental analysis, IR, UV-Vis, 1H, 13C NMR spectroscopic techniques and their molecular structure was confirmed by X-ray crystallography. Antibacterial activity evaluation against two Gram-positive (S. pneumonia and E. faecalis) and four Gram-negative strains (P. aurogenosa, K. pneumoniae, S. enterica, and E. coli) revealed their moderate antibacterial activity with MIC value of ≥250 µg/mL. Anticancer activity evaluation against a non-small lung cancer cell line (H1299) revealed the tremendous anticancer activity of these complexes which was further validated by DNA binding and docking results. DNA binding profile of the complexes studied by UV-Visible and fluorescence spectroscopy showed an intercalative binding mode with CT-DNA and an intrinsic binding constant in the range of 3.481-1.015× 105 M-1. Both the complexes were also found to exert weak toxicity to human erythrocytes by haemolytic assay compared to cisplatin. Potential of these complexes as anticancer agents will be further delineated by in vivo studies.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Rutênio/farmacologia , Triptaminas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Rutênio/química , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Relação Estrutura-Atividade , Triptaminas/química , Células Tumorais Cultivadas
3.
Medchemcomm ; 9(3): 409-436, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108933

RESUMO

In recent years, the number of people suffering from cancer and multidrug-resistant infections has sharply increased, leaving humanity without any choice but to search for new treatment options and strategies. Although cancer is considered the leading cause of death worldwide, it also paves the way many microbial infections and thus increases this burden manifold. Development of small molecules as anticancer and anti-microbial agents has great potential and a plethora of drugs are already available to combat these diseases. However, the wide occurrence of multidrug resistance in both cancer and microbial infections necessitates the development of new and potential molecules with desired properties that could circumvent the multidrug resistance problem. A successful strategy in anticancer chemotherapy has been the use of metallo-drugs and this strategy has the potential to be used for treating multidrug-resistant infections more efficiently. As a class of molecules, Schiff bases have been the topic of considerable interest, owing to their versatile metal chelating properties, inherent biological activities and flexibility to modify the structure to fine-tune it for a particular biological application. Schiff base-based metallo-drugs are being researched to develop new anticancer and anti-microbial chemotherapies and because both anticancer and anti-microbial targets are different, heterocyclic Schiff bases can be structurally modified to achieve the desired molecule, targeting a particular disease. In this review, we collect the most recent and relevant literature concerning the synthesis of heterocyclic Schiff base metal complexes as anticancer and anti-microbial agents and discuss the potential and future of this class of metallo-drugs as either anticancer or anti-microbial agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA