Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Chem Biol ; 10(3): 181-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390428

RESUMO

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.


Assuntos
Aminopiridinas/química , Dipeptídeos/química , Inibidores Enzimáticos/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Administração Oral , Regulação Alostérica , Motivos de Aminoácidos , Aminopiridinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Modelos Biológicos , Neoplasias , Proteína Fosfatase 2C
2.
ACS Med Chem Lett ; 1(1): 30-4, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900171

RESUMO

Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.

3.
ACS Med Chem Lett ; 1(1): 39-43, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900173

RESUMO

Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA