Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(11): e18392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864705

RESUMO

Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/mortalidade , Glioblastoma/metabolismo , RNA Longo não Codificante/genética , Prognóstico , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Bases de Dados Genéticas , RNA Endógeno Competitivo
2.
Stem Cell Rev Rep ; 20(1): 394-412, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924435

RESUMO

AIMS: Epidermal Neural Crest Stem Cells (EPI-NCSCs) have emerged as prospective ideal candidates to meet the fundamental requirements of cell-based therapies in neurodegenerative disorders. The present study aimed to identify the potential of metformin in driving EPI-NCSCs to neuronal/glial differentiation and express neurotrophic factors as well as assess their therapeutic potential for mitigating the main behavioral manifestations of chemotherapy-induced neurotoxicity (CIN). MAIN METHODS: EPI-NCSCs were extracted from the bulge region of hair follicle. Following expansion, transcript and protein expression profiles of key markers for stemness (Nestin, EGR-1, SOX-2 and 10), neurotrophic activity (BDNF, GDNF, NGF, FGF-2, and IL-6), and neuronal (TUB3, DCX, NRF and NeuN) and glial (PDGFRα, NG2, GFAP, and MBP) differentiation were determined on days 1 and 7 post-treatment with 10 and 100 µM metformin using real time-PCR and immunocytochemistry methods. Then, the in vivo function of metformin-treated stem cells was evaluated in the context of paclitaxel CIN. To do so, thermal hyperalgesia, mechanical allodynia, and spatial learning and memory tests were evaluated by Hotplate, Von Frey, and Morris water maze tests. KEY FINDINGS: Our result indicated that exposure of EPI-NCSCs to metformin was associated with progressive decline in stemness markers and enhanced expression levels of several neurotrophic, neuron and oligodendrocyte-specific markers. Further, it was observed that intranasal metformin-treated EPI-NCSCs improved the cognitive impairment, and mechanical and thermal hypersensitivity induced by paclitaxel in rats. SIGNIFICANCE: Collectively, we reasoned that metformin pretreatment of EPI-NCSCs might further enhance their therapeutic benefits against CIN.


Assuntos
Células-Tronco Neurais , Ratos , Animais , Paclitaxel/efeitos adversos , Paclitaxel/metabolismo , Crista Neural , Estudos Prospectivos , Fenótipo
3.
Indian J Otolaryngol Head Neck Surg ; 75(Suppl 1): 6-15, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37206728

RESUMO

Tinnitus is a symptom of various disorders that affects the quality of life of millions people. Given the significance of the access to an objective and non-invasive method for tinnitus detection, in this study the auditory brainstem response (ABR) electrophysiological test was used to diagnose salicylate-induced tinnitus, in parallel with common behavioral tests. Wistar rats were divided into saline (n = 7), and salicylate (n = 7) groups for behavioral tests, and salicylate group (n = 5) for the ABR test. The rats were evaluated by pre-pulse inhibition (PPI), gap pre-pulse inhibition of the acoustic startle (GPIAS), and ABR tests, at baseline, 14 and 62 h after salicylate (350 mg/kg) or vehicle injection. The mean percentage of GPIAS test was significantly reduced following salicylate administration, which confirms the induction of tinnitus. The ABR test results showed an increase in the hearing threshold at click and 8, 12, and 16 kHz tones. Moreover, a decline was observed in the latency ratio of II-I waves in all tone burst frequencies with the highest variation in 12 and 16 kHz as well as a decrement in the latency ratio of III-I and IV-I only in 12 and 16 kHz. ABR test is able to evaluate the salicylate induced tinnitus pitch and confirm the results of behavioral tinnitus tests. GPIAS reflexive response is dependent on brainstem circuits and the auditory cortex while, ABR test can demonstrate the function of the auditory brainstem in more details, and therefore, a combination of these two tests can offer a more accurate tinnitus evaluation.

4.
Cell Prolif ; 56(7): e13397, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36631409

RESUMO

The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.


Assuntos
Folículo Piloso , Fator A de Crescimento do Endotélio Vascular , Ratos , Embrião de Galinha , Animais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator de Transcrição AP-1/farmacologia , Diferenciação Celular , Células de Schwann/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células-Tronco/metabolismo , Células Cultivadas
5.
ACS Chem Neurosci ; 13(22): 3180-3187, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318666

RESUMO

Recent studies have indicated that dysfunction of gut microbiota, living microorganisms of the digestive tract, plays a role in the pathogenesis of neurodegenerative disorders, indicating the valuable impact of probiotics as a potential preventive or therapeutic strategy. Saccharomyces boulardii is a yeast probiotic with beneficial effects on various disorders, ranging from inflammatory gastrointestinal diseases to brain and behavioral disorders. Herein, we examined the effect of S. boulardii on memory impairment induced by lipopolysaccharide (LPS) in Wistar rats. Four groups of rats were used in this study (N = 10): (1) control [Cnt], (2) LPS, (3) LPS + S. boulardii [LPS + S], and (4) S. boulardii [S]. Animals were orally administered S. boulardii (250 mg/rat) or saline by gavage for 4 weeks. From the 14th day of the study, animals were administered intraperitoneal LPS (0.25 mg/kg/day) or saline for 9 days. We assessed memory impairment, neuroinflammation, and amyloid-ß deposition. S. boulardii ameliorated LPS-induced memory dysfunction. We observed that S. boulardii significantly reduced the elevated levels of serum interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α, as well as hippocampal levels of NLRP3 and caspase-1 in the LPS model. Moreover, S. boulardii alleviated amyloid-ß deposition in the rat hippocampus. Collectively, our findings indicated that S. boulardii could inhibit memory impairment, neuroinflammation, and amyloid-ß accumulation induced by LPS, possibly by modifying the gut microbiota.


Assuntos
Probióticos , Saccharomyces boulardii , Ratos , Animais , Lipopolissacarídeos/toxicidade , Saccharomyces cerevisiae , Ratos Wistar , Probióticos/farmacologia , Probióticos/uso terapêutico
6.
Biomed Pharmacother ; 156: 113808, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252357

RESUMO

Over the last two decades, it has become evident that estrogens preserve the integrity of energy homeostasis at central and peripheral levels. Estrogen deficiency, such as that caused by menopause or ovariectomy, has been linked to obesity and metabolic disorders that can be resolved or reversed by estrogen therapy. 17ß-estradiol (E2), as the major estrogen in the body, primarily regulates energy balance via estrogen receptor alpha (ERα). At the central level, E2 plays its catabolic role predominantly by interacting with hypothalamic arcuate neurons and sending signals via ventromedial hypothalamic neurons to control brown adipose tissue-mediated thermogenesis. In peripheral tissues, several organs, particularly the liver, brown and white adipose tissues, and pancreatic ß cells, have attracted considerable attention. In this review, we focused on the current state of knowledge of "central and peripheral" estrogen signaling in regulating energy balance via "nuclear and extranuclear pathways" in both "females and males". In this context, according to an exploratory approach, we tried to determine the principal estrogen receptor subtype/isoform in each section, the importance of extranuclear-initiated estrogen signaling on metabolic functions, and how sex differences related to ER signaling affect the prevalence of some of the metabolic disorders. Moreover, we discussed the data from a third viewpoint, understanding the clinical significance of estrogen signaling in abnormal metabolic conditions such as obesity or being on a high-fat diet. Collectively, this review exposes novel and important research gaps in our current understanding of dysmetabolic diseases and can facilitate finding more effective treatment options for these disorders.


Assuntos
Receptor alfa de Estrogênio , Estrogênios , Humanos , Feminino , Masculino , Estrogênios/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estradiol/metabolismo , Homeostase , Receptores de Estrogênio , Obesidade/metabolismo
7.
Behav Pharmacol ; 33(7): 505-512, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148838

RESUMO

Astaxanthin (AST) is a lipid-soluble carotenoid with antioxidant and anti-inflammatory properties. Previous reports demonstrated the promising effects of AST on spinal cord injury (SCI)-induced inflammation and sensory-motor dysfunction. Macrophage migration inhibitory factor (MIF), as a cytokine, plays a critical role in the inflammatory phase of SCI. The aim of this study was to evaluate the effects of AST on post-SCI levels of MIF in serum and spinal cord. The possible correlation between MIF and mechanical pain threshold was also assessed. Adult male rats were subjected to a severe compression spinal injury and 30 min later were treated with AST (Intrathecal, 2 nmol) or vehicle. Neuropathic pain was assessed by von Frey filaments before the surgery, and then on days 7, 14, 21, and 28 post-SCI. Western blot and ELISA were used to measure the serum level and spinal expression of MIF following SCI in the same time points. AST treatment significantly attenuated the SCI-induced dysregulations in the serum levels and tissue expression of MIF. A negative correlation was observed between mechanical pain threshold and serum MIF level (r = -0.5463, P < 0.001), as well as mechanical pain threshold and spinal level of MIF (r = -0.9562; P < 0.001). AST ameliorates SCI-induced sensory dysfunction, probably through inhibiting MIF-regulated inflammatory pathways.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Traumatismos da Medula Espinal , Animais , Antioxidantes/farmacologia , Lipídeos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/farmacologia , Masculino , Ratos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Xantofilas/metabolismo , Xantofilas/farmacologia
8.
Life Sci ; 309: 120924, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063978

RESUMO

AIMS: The early postnatal dietary intake has been considered a crucial factor affecting the offspring later life metabolic status. Consistently, this study investigated the oxidative and endoplasmic reticulum (ER) stress interventions in the induction of adverse metabolic effects due to the high-fat high-fructose diet (HFHFD) consumption from birth to young adulthood in rat offspring. MATERIALS AND METHODS: After delivery, the dams with their pups were randomly allocated into the normal diet (ND) and HFHFD groups. At weaning, the male offspring were divided into ND-None, ND-DMSO, ND-4-phenyl butyric acid (4-PBA), HFHFD-None, HFHFD-DMSO, and HFHFD-4-PBA groups and fed on their respected diets for five weeks. Then, the drug was injected for ten days. Subsequently, glucose and lipid metabolism parameters, oxidative and ER stress markers, and Wolfram syndrome1 (Wfs1) expression were assessed. KEY FINDINGS: In the HFHFD group, anthropometrical parameters, plasma high-density lipoprotein (HDL), and glucose-stimulated insulin secretion and content were decreased. Whereas, the levels of plasma leptin, low-density lipoprotein (LDL) and glucose, hypothalamic leptin, pancreatic catalase activity and glutathione (GSH), pancreatic and hypothalamic malondialdehyde (MDA), binding immunoglobulin protein (BIP) and C/EBP homologous protein (CHOP), and pancreatic WFS1 protein were increased. 4-PBA administration in the HFHFD group, decreased the hypothalamic and pancreatic MDA, BIP and CHOP levels, while, increased the Insulin mRNA and glucose-stimulated insulin secretion and content. SIGNIFICANCE: HFHFD intake from birth to young adulthood through the development of pancreatic and hypothalamic oxidative and ER stress, increased the pancreatic WFS1 protein and impaired glucose and lipid homeostasis in male rat offspring.


Assuntos
Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Frutose , Estresse Oxidativo , Animais , Masculino , Ratos , Ácido Butírico/farmacologia , Catalase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dimetil Sulfóxido/farmacologia , Frutose/efeitos adversos , Glucose/farmacologia , Glutationa/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Malondialdeído/farmacologia , RNA Mensageiro/metabolismo , Tungstênio/farmacologia
9.
Mol Neurobiol ; 59(10): 6281-6306, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35922728

RESUMO

It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia
10.
Neuropeptides ; 95: 102262, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709657

RESUMO

Interferon beta (IFNß) is a cytokine with anti-apoptotic and anti-inflammatory properties, and its beneficial effects on Alzheimer's disease (AD) have been recently shown. The alterations in cerebral glucose uptake are closely linked to memory deficit and AD progression. The current study was designed to determine if IFNß can improve recognition memory and brain glucose uptake in a rat model of AD. The lentiviruses expressing mutant human amyloid precursor protein were injected bilaterally to the rat hippocampus. From day 23 after virus injection, rats were intranasally treated with recombinant IFNß protein (68,000 IU/rat) every other day until day 50. Recognition memory performance was evaluated by novel object recognition test on days 46-49. The 18F-2- fluoro-deoxy-d-glucose positron emission tomography (18F-FDG-PET) was used to determine changes in brain glucose metabolism on day 50. The expression of the PI3K/Akt pathway components, neurotrophins and mitochondrial biogenesis factors were also measured by qPCR in the hippocampus. Our results showed that IFNß treatment improves recognition memory performance in parallel with increased glucose uptake and neuronal survival in the hippocampus of the AD rats. The neuroprotective effect of IFNß could be attributed, at least partly, to activation of PI3K-Akt-mTOR signaling pathway, increased expression of NGF, and mitochondrial biogenesis. Taken together, our findings suggest the therapeutic potential of IFNß for AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Hipocampo , Humanos , Interferon beta/metabolismo , Interferon beta/farmacologia , Interferon beta/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Biogênese de Organelas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
11.
CNS Neurosci Ther ; 28(9): 1425-1438, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715988

RESUMO

AIMS: Regenerative medicine literature has demonstrated that the therapeutic potentials of mesenchymal stem cells (MSCs) in experimental stroke are attributed to secreted bioactive factors rather than to cell replacement. Here, we explored the effects of secretome or conditioned medium (CM) derived from human embryonic stem cell-derived MSCs (hESC-MSCs) on hippocampal neurogenesis, inflammation, and apoptosis in experimental stroke. METHODS: Ischemic stroke was induced by right middle cerebral artery occlusion (MCAO) in male Wistar rats, and CM was infused either one time (1-h post-stroke; CM1) or three times (1-, 24-, and 48-h post-stroke; CM3) into left lateral ventricle. Neurogenesis markers (Nestin, Ki67, Doublecortin, and Reelin) were assessed at transcript and protein levels in the dentate gyrus of the hippocampus on day seven following MCAO. In parallel, changes in the gene expression of markers of apoptosis (Bax and Bim, as well as an anti-apoptotic marker of Bcl2), inflammation (IL-1ß and IL-6, as well as IL-10 as an anti-inflammatory cytokine), trophic factors (BDNF, GDNF, NGF, and NT-3), and angiogenesis (CD31 and VEGF) in the hippocampus were assessed. RESULTS: Our results demonstrate that CM3 treatment could stimulate neurogenesis and angiogenesis concomitant with inhibition of inflammation, apoptosis, and neuronal loss in ischemic brains. Furthermore, rats treated with CM3 exhibited upregulation in neurotrophic factors. CONCLUSION: Our results suggest that hESC-MSC-CM could promote neurogenesis and protect brain tissue from ischemic injury, partly mediated by induction of angiogenesis and neurotrophic factors and inhibition of inflammatory and apoptotic factors expression.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Animais , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Infarto da Artéria Cerebral Média/complicações , Inflamação/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurogênese , Neuroproteção , Ratos , Ratos Wistar , Secretoma , Acidente Vascular Cerebral/metabolismo
12.
Front Pharmacol ; 13: 807639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250559

RESUMO

Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.

13.
Mol Neurobiol ; 58(10): 5327-5337, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34297315

RESUMO

Schwann cells (SCs) are considered potentially attractive candidates for transplantation therapies in neurodegenerative diseases. However, problems arising from the isolation and expansion of the SCs restrict their clinical applications. Establishing an alternative Schwann-like cell type is a prerequisite. Epidermal neural crest stem cells (EPI-NCSCs) are well studied for their autologous accessibility, along with the ability to produce major neural crest derivatives and neurotrophic factors. In the current study, we explored insulin influence, a well-known growth factor, on directing EPI-NCSCs into the Schwann cell (SC) lineage. EPI-NCSCs were isolated from rat hair bulge explants. The viability of cells treated with a range of insulin concentrations (0.05-100 µg/ml) was defined by MTT assay at 24, 48, and 72 h. The gene expression profiles of neurotrophic factors (BDNF, FGF-2, and IL-6), key regulators involved in the development of SC (EGR-1, SOX-10, c-JUN, GFAP, OCT-6, EGR-2, and MBP), and oligodendrocyte (PDGFR-α and NG-2) were quantified 1 and 9 days post-treatment with 0.05 and 5 µg/ml insulin. Furthermore, the protein expression of nestin (stemness marker), SOX-10, PDGFR-α, and MBP was analyzed following the long-term insulin treatment. Insulin downregulated the early-stage SC differentiation marker (EGR-1) and increased neurotrophins (BDNF and IL-6) and pro-myelinating genes, including OCT-6, SOX-10, EGR-2, and MBP, as well as oligodendrocyte differentiation markers, upon exposure for 9 days. Insulin can promote EPI-NCSC differentiation toward SC lineage and possibly oligodendrocytes. Thus, employing insulin might enhance the EPI-NCSCs efficiency in cell transplantation strategies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Insulina/farmacologia , Crista Neural/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Epiderme/fisiologia , Hipoglicemiantes/farmacologia , Masculino , Crista Neural/citologia , Crista Neural/fisiologia , Células-Tronco Neurais/fisiologia , Ratos , Ratos Wistar , Células de Schwann/fisiologia
14.
Arch Med Res ; 52(8): 777-787, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34134920

RESUMO

BACKGROUND: The ongoing outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the latest threat to global health, causes overwhelming effects for the public healthcare systems worldwide. Of note, in addition to the respiratory complications, some patients with coronavirus disease 2019 (COVID-19) also develop serious cardiovascular injuries. Vasoactive peptides play an important role in a wide range of physiological and pathological conditions. AIM: With the urgent need for exploring the specific therapeutic targets and biomarkers for the emerging COVID-19, the general aim of this review is to discuss the potentials of the vasoactive peptides including Angiotensin II (Ang II), vasoactive intestinal peptide (VIP), endothelin-1 (ET-1), calcitonin gene-related peptide (CGRP), natriuretic peptides, substance P (SP) and bradykinin (BK) as therapeutic targets and/or prognostic indicators for the COVID-19 pandemic. CONCLUSION: Based on various observations some authors conclude that the assessment of vasoactive peptides shall be considered a routine part of COVID-19 patient monitoring, and they can serve as potential therapeutic targets for the disease management.


Assuntos
COVID-19 , Biomarcadores , Humanos , Pandemias , Peptídeos , SARS-CoV-2
15.
Biomed Pharmacother ; 140: 111709, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34020250

RESUMO

It is well accepted that the success of mesenchymal stem cells (MSCs) therapy against experimental stroke is mainly due to cellular paracrine manners rather than to replace lost tissue per se. Given such "bystander" effects, cell-free therapeutics manifest as a promising approach in regenerative medicine. Here we aimed at evaluating the effect of conditioned medium (CM) derived from human embryonic MSCs (hESC-MSC) on the neurological deficit, neurogenesis, and angiogenesis in experimental stroke. Adult male Wistar rats subjected to middle cerebral artery occlusion (MCAO), were treated with intracerebroventricular CM either one time (1 h post MCAO) or three times (1, 24, and 48 h post MCAO). Motor performance was assessed by the cylinder test on days 3 and 7. Cerebral samples were obtained for infarct size and molecular analysis on day 7 post-injury. Neurogenesis was evaluated by probing Nestin, Ki67, DCX, and Reelin transcripts and protein levels in the striatum, cortex, subventricular zone, and corpus callosum. The mRNA and protein expression of CD31 were also assessed in the striatum and cortical region to estimate angiogenesis post MCAO. Our findings demonstrate that CM treatment could significantly ameliorate neurological deficits and infarct volume in MCAO rats. Furthermore, ischemic stroke was associated with higher levels of neurogenesis and angiogenesis markers. Following treatment with CM, these markers were further potentiated in the brain regions. This study suggests that the therapeutic benefits of CM obtained from hESC-MSCs at least partly are mediated through improved neurogenesis and angiogenesis to accelerate the recovery of cerebral ischemia insult.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Células-Tronco Mesenquimais , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Proteína Duplacortina , Humanos , Infarto da Artéria Cerebral Média/fisiopatologia , Injeções Intraventriculares , AVC Isquêmico/fisiopatologia , Masculino , Ratos Wistar , Proteína Reelina
16.
Behav Brain Res ; 408: 113260, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33775777

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, associated with several pathophysiological complaints. Impaired insulin signaling in the brain, is one of the important characteristic features of AD which is accompanied by cognitive deficits. According to the multifactorial and complicated pathology of AD, no modifying therapy has been approved yet. Imipramine is a kind of tricyclic antidepressant with reported anti-inflammatory and anti-oxidant effects in the brain. There are controversial studies about the effect of this drug on spatial memory. This study investigates the effect of imipramine on streptozotocin (STZ) induced memory impairment in rats. Pursuing this objective, rats were treated with imipramine 10 or 20 mg/kg i.p. once a day for 14 days. 24 h after the last injection, memory function was evaluated by the Morris water maze (MWM) test in 4 consecutive days. Then, hippocampi were removed and the activity of caspase-3, mitogen activated protein kinases (MAPKs) family and inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1ser307) were analyzed using Western blotting. Results showed that imipramine prevents memory impairment in STZ induced rats and this improvement was accompanied with an increase in ERK activity, reduction of caspase-3 and JNK activity, as well as partial restoration of P38 and IRS-1 activity. In conclusion, our study demonstrated that at least some members of the MAPK family are involved in the neuroprotective effect of imipramine.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Doença de Alzheimer/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Imipramina/farmacologia , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Ratos , Ratos Wistar , Estreptozocina/farmacologia
17.
CNS Neurosci Ther ; 27(3): 308-319, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497031

RESUMO

AIMS: Experimental and clinical evidences demonstrate that common dysregulated pathways are involved in Parkinson's disease (PD) and type 2 diabetes. Recently, insulin treatment through intranasal (IN) approach has gained attention in PD, although the underlying mechanism of its potential therapeutic effects is still unclear. In this study, we investigated the effects of insulin treatment in a rat model of PD with emphasis on mitochondrial function indices in striatum. METHODS: Rats were treated with a daily low dose (4IU/day) of IN insulin, starting 72 h after 6-OHDA-induced lesion and continued for 14 days. Motor performance, dopaminergic cell survival, mitochondrial dehydrogenases activity, mitochondrial swelling, mitochondria permeability transition pore (mPTP), mitochondrial membrane potential (Δψm ), reactive oxygen species (ROS) formation, and glutathione (GSH) content in mitochondria, mitochondrial adenosine triphosphate (ATP), and the gene expression of PGC-1α, TFAM, Drp-1, GFAP, and Iba-1 were assessed. RESULTS: Intranasal insulin significantly reduces 6-OHDA-induced motor dysfunction and dopaminergic cell death. In parallel, it improves mitochondrial function indices and modulates mitochondria biogenesis and fission as well as activation of astrocytes and microglia. CONCLUSION: Considering the prominent role of mitochondrial dysfunction in PD pathology, IN insulin as a disease-modifying therapy for PD should be considered for extensive research.


Assuntos
Insulina/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Transtornos Motores/tratamento farmacológico , Oxidopamina/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Administração Intranasal , Animais , Humanos , Masculino , Mitocôndrias/fisiologia , Transtornos Motores/induzido quimicamente , Transtornos Motores/fisiopatologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Ratos , Ratos Wistar , Rotação
18.
Pharmacol Res ; 163: 105307, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246174

RESUMO

Exploring the regulatory effects of estrogen on different body organs via its receptors is largely of interest. Recently, the expression, signaling and the clinical significance of ERα36, the newly identified isoform of ERα, mediating non-genomic signaling of estrogen, have been studied in a wide range of organs and tumors. ERα36 is expressed highly in the CNS and actively involved in neuroprotection. It is also suggested to be an important estrogen receptor involved in preserving bone in postmenopausal women. On the oncological side, although ERα36 has usually been considered to be an oncogenic molecule, results from some studies paradoxically imply its protective role in certain tumors. Collectively, it seems that ERα36 is highly involved in cell type-specific functions of estrogen through its MAPK/ERK signaling, which is dependent on ERα36 expression levels, ligand concentrations and disease stage. The response is also dependent on the levels of ERα66 and ERß. These factors influence the ERK kinetic and determine the ultimate mitogenic or antimitogenic signaling of estrogen, leading to cell survival or cell death. In this review, we summarize the recent organ-specific, cellular and molecular events and the mechanisms involved in estrogen effects mediated through the ERα36/ ERα66 with a particular focus on carcinomas where more clinical information has recently emerged.


Assuntos
Estrogênios/metabolismo , Neoplasias/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Apoptose , Produtos Biológicos/farmacologia , Humanos , Neuroproteção , Isoformas de Proteínas/metabolismo , Receptores de Estrogênio/química , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuais
19.
J Cell Physiol ; 236(3): 1967-1979, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32730642

RESUMO

The transplantation of mesenchymal stem cells (MSCs) is of main approaches in regenerative therapy for stroke. Due to the potential tumorigenicity and low survival rate of transplanted cells, focuses have been shifted from cell replacement to their paracrine effects. Therefore, stem cell-conditioned medium (CM) therapy has emerged as an alternative candidate. Here, we investigated the effect of CM derived from human embryonic MSCs on experimental ischemic stroke. Wistar rats underwent ischemic stroke by the right middle cerebral artery occlusion (MCAO). CM was infused either one time (1 hr post-MCAO) or three times (1, 24, and 48 hr post-MCAO) through guide cannula into the left lateral ventricle. Neurological functions were evaluated using Bederson's test and modified Neurological Severity Score on Days 1, 3, and 7 following MCAO. Infarction volumes and cerebral edema were measured on Days 3 and 7. growth-associated protein-43, synaptophysin, cAMP response element-binding protein, and phosphorylated-cAMP response element-binding protein levels were also assessed in peri-ischemic cortical tissue on Day 7 postsurgery. Our results indicated that three times injections of CM could significantly reduce body weight loss, mortality rate, infarct volumes, cerebral edema, and improve neurological deficits in MCAO rats. Moreover, three injections of CM could restore decreased levels of synaptic markers in MCAO rats up to its normal levels observed in the sham group. Our data suggest that using the CM obtained from embryonic stem cells-MSCs could be a potent therapeutic approach to attenuate cerebral ischemia insults which may be partly mediated through modulation of synaptic plasticity.


Assuntos
Encéfalo/patologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/metabolismo , Acidente Vascular Cerebral/patologia , Sinapses/patologia , Animais , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Infarto Encefálico/complicações , Infarto Encefálico/patologia , Linhagem Celular , Edema/complicações , Edema/patologia , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Injeções Intraventriculares , Masculino , Neurogênese/efeitos dos fármacos , Ratos Wistar , Sinapses/efeitos dos fármacos
20.
J Chem Neuroanat ; 109: 101821, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32512152

RESUMO

INTRODUCTION: Human dental pulp stem cells (hDPSCs), a promising source for autologous transplantation in regenerative medicine, have been shown to be able to differentiate into neural precursors. Optogenetics is considered as an advanced biological technique in neuroscience which is able to control the activity of genetically modified stem cells by light. The purpose of this study is to investigate the neurogenic differentiation of hDPSCs following optogenetic stimulation. METHODS: The hDPSCs were isolated by mechanical enzymatic digestion from an impacted third molar and cultured in DMEM/F12. The cells were infected with lentiviruses carrying CaMKIIa-hChR2 (H134R). Opsin-expressing hDPSCs were plated at the density of 5 × 104 cells/well in 6-well plates and optical stimulation was conducted with blue light (470 nm) pulsing at 15 Hz, 90 % Duty Cycle and 10 mW power for 10 s every 90 minutes, 6 times a day for 5 days. Two control groups including non-opsin-expressing hDPSCs and opsin-expressing hDPSCs with no optical stimulation were also included in the study. A day after last light stimulation, the viability of cells was analyzed by the MTT assay and the morphological changes were examined by phase contrast microscopy. The expression of Nestin, Microtubule-Associated protein 2 (MAP2) and Doublecortin (DCX) were examined by immunocytochemistry. RESULTS: Human DPSCs expressed the reporter gene, mCherry, 72 hours after lentiviral infection. The result of MTT assay revealed a significant more viability in optical stimulated opsin-expressing hDPSCs as compared with two control groups. Moreover, optical stimulation increased the expression of Nestin, Doublecortin and MAP2 along with morphological changes from spindle shape to neuron-like shape. CONCLUSION: Optogenetics stimulation through depolarizing the hDPSCs can increase the cells viability and/or proliferation and also promote the differentiation toward neuron-like cells.


Assuntos
Polpa Dentária/citologia , Neurogênese/fisiologia , Optogenética , Células-Tronco/citologia , Adolescente , Adulto , Proliferação de Células/fisiologia , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA