Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Br J Cancer ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643337

RESUMO

The World Health Organisation recognised human papillomavirus (HPV) as the cause of multiple cancers, including head and neck cancers. HPV is a double-stranded DNA virus, and its viral gene expression can be controlled after infection by cellular and viral promoters. In cancer cells, the HPV genome is detected as either integrated into the host genome, episomal (extrachromosomal), or a mixture of integrated and episomal. Viral integration requires the breakage of both viral and host DNA, and the integration rate correlates with the level of DNA damage. Interestingly, patients with HPV-positive head and neck cancers generally have a good prognosis except for a group of patients with fully integrated HPV who show worst clinical outcomes. Those patients present with lowered expression of viral genes and limited infiltration of cytotoxic T cells. An impediment to effective therapy applications in the clinic is the sole testing for HPV positivity without considering the HPV integration status. This review will discuss HPV integration as a potential determinant of response to therapies in head and neck cancers and highlight to the field a novel therapeutic avenue that would reduce the cancer burden and improve patient survival.

2.
Sci Rep ; 13(1): 17033, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813936

RESUMO

The tumour-cell based initiation of immune evasion project evaluated the role of Gipie in adenoid cystic carcinoma (ACC) and mucoepidermoid carcinoma (A-253), from ninety-six 3D-ACC and A-253-immune co-culture models using natural killer cells (NK), and Jurkat cells (JK). Abnormal ACC morphology was observed in 3D-ACC immune co-culture models. Gipie-silencing conferred a "lymphoblast-like" morphology to ACC cells, a six-fold increase in apoptotic cells (compared to unaltered ACC cells, P ≤ 0.0001), a two-fold decrease in T regulatory cells (FoxP3+/IL-2Rα+/CD25+) (P ≤ 0.0001), and a three-fold increase in activated NK cells (NKp30+/IFN-γ+) (P ≤ 0.0001) with significantly higher release of granzyme (P ≤ 0.001) and perforin (P ≤ 0.0001).


Assuntos
Carcinoma Adenoide Cístico , Humanos , Carcinoma Adenoide Cístico/patologia , Células Matadoras Naturais , Linfócitos T Reguladores , Células Jurkat , Perforina
3.
Nat Commun ; 14(1): 1591, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949044

RESUMO

In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell population. The EMT signature coincides with PI3K/mTOR inactivation in the mesenchymal subtype. Conversely, the signature is suppressed in epithelial cells of the basal subtype which exhibits hyperactive PI3K/mTOR signalling. We further identify YBX1 phosphorylation, downstream of the PI3K/mTOR pathway, restraining basal-like cancer cell proliferation. In contrast, YBX1 acts as a safeguard against the proliferation-to-invasion switch in mesenchymal-like epithelial cancer cells, and its loss accentuates partial-EMT and in vivo invasion. Interestingly, phospho-YBX1 that is mutually exclusive to partial-EMT, emerges as a prognostic marker for overall patient outcomes. These findings create a unique opportunity to sensitise mesenchymal cancer cells to PI3K/mTOR inhibitors by shifting them towards a basal-like subtype as a promising therapeutic approach against HNC.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Movimento Celular , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
4.
Cancers (Basel) ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36765809

RESUMO

Breakthrough research in the field of immune checkpoint inhibitors and the development of a human papilloma virus vaccine triggered a plethora of research in the field of cancer immunotherapy. Both had significant effects on the treatment of head and neck squamous cell carcinoma. The advent of preclinical models and multidisciplinary approaches including bioinformatics, genetic engineering, clinical oncology, and immunology helped in the development of tumour-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy. Here, we discuss different immunotherapies such as adoptive T-cell transfer, immune checkpoint inhibitors, interleukins, and cancer vaccines for the treatment of head and neck cancer. This review showcases the intrinsic relation between the understanding and implementation of basic biology and clinical practice. We also address potential limitations of each immunotherapy approach and the advantages of personalized immunotherapy. Overall, the aim of this review is to encourage further research in the field of immunotherapy for head and neck cancer.

5.
Cancers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626124

RESUMO

Squamous cell carcinomas (SCCs) are cancers of epithelial cells lining the aerodigestive and genitourinary tract [...].

6.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269877

RESUMO

Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Proteínas Repressoras/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Transição Epitelial-Mesenquimal/genética , Camundongos , Neoplasias/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830441

RESUMO

The bacterial antigen, lipopolysaccharide (LPS) and disruptions in calcium channels are independently known to influence oral cancer progression. Previously, we found that bacterial antigens, LPS and lipoteichoic acid (LTA) act as confounders during the action of capsaicin on Cal 27 oral cancer proliferation. As calcium channel drugs may affect oral cancer cell proliferation, we investigated the effect of ML218 HCl, a T-type voltage-gated calcium channel blocker, on the proliferation of Cal 27 oral cancer cells. We hypothesized that ML218 HCl could effectively reduce LPS-induced oral cancer cell proliferation. LPS and LTA antigens were added to Cal 27 oral cancer cells either prior to and/or concurrently with ML218 HCl treatment, and the efficacy of the treatment was evaluated by measuring Cal 27 proliferation, cell death and apoptosis. ML218 HCl inhibited oral cancer cell proliferation, increased apoptosis and cell death, but their efficacy was significantly reduced in the presence of bacterial antigens. ML218 HCl proved more effective than capsaicin in reducing bacterial antigen-induced Cal 27 oral cancer cell proliferation. Our results also suggest an interplay of proliferation factors during the bacterial antigens and calcium channel drug interaction in Cal 27. Bacterial antigen reduction of drug efficacy should be considered for developing newer pharmacological agents or testing the efficacy of the existing oral cancer chemotherapeutic agents. Finally, voltage gated calcium channel drugs should be considered for future oral cancer research.


Assuntos
Antígenos de Bactérias/genética , Compostos Azabicíclicos/farmacologia , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Antígenos de Bactérias/imunologia , Apoptose/efeitos dos fármacos , Capsaicina/farmacologia , Linhagem Celular Tumoral , Humanos , Lipopolissacarídeos/toxicidade , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/genética , Neoplasias Bucais/patologia
8.
Cancers (Basel) ; 13(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680271

RESUMO

The oral epithelium is one of the fastest repairing and continuously renewing tissues. Stem cell activation within the basal layer of the oral epithelium fuels the rapid proliferation of multipotent progenitors. Stem cells first undergo asymmetric cell division that requires tightly controlled and orchestrated differentiation networks to maintain the pool of stem cells while producing progenitors fated for differentiation. Rapidly expanding progenitors subsequently commit to advanced differentiation programs towards terminal differentiation, a process that regulates the structural integrity and homeostasis of the oral epithelium. Therefore, the balance between differentiation and terminal differentiation of stem cells and their progeny ensures progenitors commitment to terminal differentiation and prevents epithelial transformation and oral squamous cell carcinoma (OSCC). A recent comprehensive molecular characterization of OSCC revealed that a disruption of terminal differentiation factors is indeed a common OSCC event and is superior to oncogenic activation. Here, we discuss the role of differentiation and terminal differentiation in maintaining oral epithelial homeostasis and define terminal differentiation as a critical tumour suppressive mechanism. We further highlight factors with crucial terminal differentiation functions and detail the underlying consequences of their loss. Switching on terminal differentiation in differentiated progenitors is likely to represent an extremely promising novel avenue that may improve therapeutic interventions against OSCC.

9.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445392

RESUMO

Oral cancer is a major global health problem with high incidence and low survival rates. The oral cavity contains biofilms as dental plaques that harbour both Gram-negative and Gram-positive bacterial antigens, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), respectively. LPS and LTA are known to stimulate cancer cell growth, and the bioactive phytochemical capsaicin has been reported to reverse this effect. Here, we tested the efficacy of oral cancer chemotherapy treatment with capsaicin in the presence of LPS, LTA or the combination of both antigens. LPS and LTA were administered to Cal 27 oral cancer cells prior to and/or concurrently with capsaicin, and the treatment efficacy was evaluated by measuring cell proliferation and apoptotic cell death. We found that while capsaicin inhibits oral cancer cell proliferation and metabolism (MT Glo assay) and increases cell death (Trypan blue exclusion assay and Caspase 3/7 expression), its anti-cancer effect was significantly reduced on cells that are either primed or exposed to the bacterial antigens. Capsaicin treatment significantly increased oral cancer cells' suppressor of cytokine signalling 3 gene expression. This increase was reversed in the presence of bacterial antigens during treatment. Our data establish a rationale for clinical consideration of bacterial antigens that may interfere with the treatment efficacy of oral cancer.


Assuntos
Antígenos de Bactérias/efeitos adversos , Capsaicina/farmacologia , Neoplasias Bucais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/efeitos adversos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/microbiologia , Ácidos Teicoicos/efeitos adversos
10.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34180969

RESUMO

Ets homologous factor (EHF) is a member of the epithelial-specific Ets (ESE) family of transcription factors. To investigate its role in development and epithelial homeostasis, we generated a series of novel mouse strains in which the Ets DNA-binding domain of Ehf was deleted in all tissues (Ehf-/-) or specifically in the gut epithelium. Ehf-/- mice were born at the expected Mendelian ratio, but showed reduced body weight gain, and developed a series of pathologies requiring most Ehf-/- mice to reach an ethical endpoint before reaching 1 year of age. These included papillomas in the facial skin, abscesses in the preputial glands (males) or vulvae (females), and corneal ulcers. Ehf-/-mice also displayed increased susceptibility to experimentally induced colitis, which was confirmed in intestinal-specific Ehf knockout mice. Gut-specific Ehf deletion also impaired goblet cell differentiation, induced extensive transcriptional reprogramming in the colonic epithelium and enhanced Apc-initiated adenoma development. The Ets DNA-binding domain of EHF is therefore essential for postnatal homeostasis of the epidermis and colonic epithelium, and its loss promotes colonic tumour development.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Colo/etiologia , Epiderme/metabolismo , Genes APC , Homeostase , Mucosa Intestinal/metabolismo , Fatores de Transcrição/genética , Animais , Reprogramação Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo
11.
Mol Ther ; 29(8): 2571-2582, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33775911

RESUMO

Current therapies for treating heterogeneous cancers such as head and neck squamous cell carcinoma (HNSCC) are non-selective and are administered independent of response biomarkers. Therapy resistance subsequently emerges, resulting in increased cellular proliferation that is associated with loss of differentiation. Whether a cancer cell differentiation potential can dictate therapy responsiveness is still currently unknown. A multi-omic approach integrating whole-genome and whole-transcriptome sequencing with drug sensitivity was employed in a HNSCC mouse model, primary patients' data, and human cell lines to assess the potential of functional differentiation in predicting therapy response. Interestingly, a subset of HNSCC with effective GRHL3-dependent differentiation was the most sensitive to inhibitors of PI3K/mTOR, c-Myc, and STAT3 signaling. Furthermore, we identified the GRHL3-differentiation target gene Filaggrin (FLG) as a response biomarker and more importantly, stratified HNSCC subsets as treatment resistant based on their FLG mutational profile. The loss of FLG in sensitive HNSCC resulted in a dramatic resistance to targeted therapies while the GRHL3-FLG signature predicted a favorable patient prognosis. This study provides evidence for a functional GRHL3-FLG tumor-specific differentiation axis that regulates targeted therapy response in HNSCC and establishes a rationale for clinical investigation of differentiation-paired targeted therapy in heterogeneous cancers.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/genética , Proteínas Filagrinas/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transplante de Neoplasias , Prognóstico , Transdução de Sinais , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
12.
Cancers (Basel) ; 12(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147719

RESUMO

It is now clear that the most common solid cancer is squamous cell cancer (SCC) [...].

13.
Dis Model Mech ; 13(3)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32005677

RESUMO

Cleft lip and palate are common birth defects resulting from failure of the facial processes to fuse during development. The mammalian grainyhead-like (Grhl1-3) genes play key roles in a number of tissue fusion processes including neurulation, epidermal wound healing and eyelid fusion. One family member, Grhl2, is expressed in the epithelial lining of the first pharyngeal arch in mice at embryonic day (E)10.5, prompting analysis of the role of this factor in palatogenesis. Grhl2-null mice die at E11.5 with neural tube defects and a cleft face phenotype, precluding analysis of palatal fusion at a later stage of development. However, in the first pharyngeal arch of Grhl2-null embryos, dysregulation of transcription factors that drive epithelial-mesenchymal transition (EMT) occurs. The aberrant expression of these genes is associated with a shift in RNA-splicing patterns that favours the generation of mesenchymal isoforms of numerous regulators. Driving the EMT perturbation is loss of expression of the EMT-suppressing transcription factors Ovol1 and Ovol2, which are direct GRHL2 targets. The expression of the miR-200 family of microRNAs, also GRHL2 targets, is similarly reduced, resulting in a 56-fold upregulation of Zeb1 expression, a major driver of mesenchymal cellular identity. The critical role of GRHL2 in mediating cleft palate in Zeb1-/- mice is evident, with rescue of both palatal and facial fusion seen in Grhl2-/-;Zeb1-/- embryos. These findings highlight the delicate balance between GRHL2/ZEB1 and epithelial/mesenchymal cellular identity that is essential for normal closure of the palate and face. Perturbation of this pathway may underlie cleft palate in some patients.


Assuntos
Embrião de Mamíferos/metabolismo , Palato/embriologia , Palato/metabolismo , Fatores de Transcrição/deficiência , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Região Branquial/embriologia , Caderinas/metabolismo , Cruzamentos Genéticos , Embrião de Mamíferos/ultraestrutura , Epiderme/embriologia , Epiderme/ultraestrutura , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Epitélio/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Maxila/embriologia , Maxila/patologia , Mesoderma/embriologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Tamanho do Órgão , Fenótipo , Gravidez , Splicing de RNA/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/deficiência
14.
Int J Mol Sci ; 20(9)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060263

RESUMO

Squamous cell carcinomas (SCC), including cutaneous SCCs, are by far the most frequent cancers in humans, accounting for 80% of all newly diagnosed malignancies worldwide. The old dogma that SCC develops exclusively from stem cells (SC) has now changed to include progenitors, transit-amplifying and differentiated short-lived cells. Accumulation of specific oncogenic mutations is required to induce SCC from each cell population. Whilst as fewer as one genetic hit is sufficient to induce SCC from a SC, multiple events are additionally required in more differentiated cells. Interestingly, the level of differentiation correlates with the number of transforming events required to induce a stem-like phenotype, a long-lived potential and a tumourigenic capacity in a progenitor, a transient amplifying or even in a terminally differentiated cell. Furthermore, it is well described that SCCs originating from different cells of origin differ not only in their squamous differentiation status but also in their malignant characteristics. This review summarises recent findings in cutaneous SCC and highlights transforming oncogenic events in specific cell populations. It underlines oncogenes that are restricted either to stem or differentiated cells, which could provide therapeutic target selectivity against heterogeneous SCC. This strategy may be applicable to SCC from different body locations, such as head and neck SCCs, which are currently still associated with poor survival outcomes.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia , Animais , Biomarcadores Tumorais , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Humanos , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
15.
Cells ; 8(4)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970654

RESUMO

The mammalian target of rapamycin (mTOR) signalling pathway is a central regulator of metabolism in all cells. It senses intracellular and extracellular signals and nutrient levels, and coordinates the metabolic requirements for cell growth, survival, and proliferation. Genetic alterations that deregulate mTOR signalling lead to metabolic reprogramming, resulting in the development of several cancers including those of the head and neck. Gain-of-function mutations in EGFR, PIK3CA, and HRAS, or loss-of-function in p53 and PTEN are often associated with mTOR hyperactivation, whereas mutations identified from The Cancer Genome Atlas (TCGA) dataset that potentially lead to aberrant mTOR signalling are found in the EIF4G1, PLD1, RAC1, and SZT2 genes. In this review, we discuss how these mutant genes could affect mTOR signalling and highlight their impact on metabolic processes, as well as suggest potential targets for therapeutic intervention, primarily in head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Serina-Treonina Quinases TOR , Animais , Linhagem Celular Tumoral , Mutação com Ganho de Função , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Mutação com Perda de Função , Camundongos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/fisiologia
16.
Cell Death Dis ; 9(11): 1072, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341279

RESUMO

Identifying soluble factors that influence epidermal integrity is critical for the development of preventative and therapeutic strategies for disorders such as ichthyosis, psoriasis, dermatitis and epidermal cancers. The transcription factor Grainyhead-like 3 (GRHL3) is essential for maintaining barrier integrity and preventing development of cutaneous squamous cell carcinoma (SCC); however, how loss of this factor, which in the skin is expressed exclusively within suprabasal epidermal layers triggers proliferation of basal keratinocytes, had thus far remained elusive. Our present study identifies thymus and activation-regulated chemokine (TARC) as a novel soluble chemokine mediator of keratinocyte proliferation following loss of GRHL3. Knockdown of GRHL3 in human keratinocytes showed that of 42 cytokines examined, TARC was the only significantly upregulated chemokine. Mouse skin lacking Grhl3 presented an inflammatory response with hallmarks of TARC activation, including heightened induction of blood clotting, increased infiltration of mast cells and pro-inflammatory T cells, increased expression of the pro-proliferative/pro-inflammatory markers CD3 and pSTAT3, and significantly elevated basal keratinocyte proliferation. Treatment of skin cultures lacking Grhl3 with the broad spectrum anti-inflammatory 5-aminosalicylic acid (5ASA) partially restored epidermal differentiation, indicating that abnormal keratinocyte proliferation/differentiation balance is a key driver of barrier dysfunction following loss of Grhl3, and providing a promising therapeutic avenue in the treatment of GRHL3-mediated epidermal disorders.


Assuntos
Proliferação de Células , Quimiocina CCL17/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinoma de Células Escamosas/prevenção & controle , Linhagem Celular , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Humanos , Mesalamina/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout/embriologia , Camundongos SCID , Pele/efeitos dos fármacos , Pele/embriologia , Pele/metabolismo , Neoplasias Cutâneas/prevenção & controle , Fatores de Transcrição/genética
17.
Cell Death Differ ; 25(6): 1146-1159, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29238073

RESUMO

Cutaneous squamous cell carcinoma (SCC) is a recurrent cancer that is prevalent in predisposed subjects such as immunosuppressed patients and patients being treated for other malignancies. Model systems to trial therapies at different stages of SCC development are lacking, therefore precluding efficient therapeutic interventions. Here, we have disrupted the expression of the tumor suppressor GRHL3 to induce loss of PTEN and activation of the PI3K/mTOR signaling pathway in mice and human skin, promoting aggressive SCC development. We then examined the potential for targeting PI3K/mTOR and an oncogenic driver miR-21, alone and in combination, for the prevention and treatment of SCC during the initiation, promotion/progression and establishment stages. Treatment with PI3K/mTOR inhibitors completely prevented tumor initiation, and these inhibitors significantly delayed the course of papilloma progression to malignancy. However, established SCC did not undergo any growth regression, indicating that this therapy is ineffective in established cancers. Mechanistically, the resistant SCCs displayed increased miR-21 expression in mice and humans where antagonists of miR-21 rescued expression levels of GRHL3/PTEN, but the combination of miR-21 antagonism with PI3K/mTOR inhibition resulted in acquired SCC resistance in part via c-MYC and OCT-4 upregulation. In conclusion, our data provide molecular evidence for the efficacy of targeting oncogenic drivers of SCC during the initiation and promotion stages and indicate that combination therapy may induce an aggressive phenotype when applied in the establishment stage.


Assuntos
Carcinoma de Células Escamosas , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias Cutâneas , Serina-Treonina Quinases TOR/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Serina-Treonina Quinases TOR/genética
18.
Int J Mol Sci ; 18(7)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654000

RESUMO

Non-melanomatous skin cancers (NMSCs), which include basal and squamous cell carcinoma (BCC and SCC respectively), represent a significant burden on the population, as well as an economic load to the health care system; yet treatments of these preventable cancers remain ineffective. Studies estimate that there has been a 2-fold increase in the incidence of NMSCs between the 1960s and 1980s. The increase in cases of NMSCs, as well as the lack of effective treatments, makes the need for novel therapeutic approaches all the more necessary. To rationally develop more targeted treatments for NMSCs, a better understanding of the cell of origin, in addition to the underlying pathophysiological mechanisms that govern the development of these cancers, is urgently required. Research over the past few years has provided data supporting both a "bottom up" and "top down" mechanism of tumourigenesis. The "bottom up" concept involves a cancer stem cell originating in the basal compartment of the skin, which ordinarily houses the progenitor cells that contribute towards wound healing and normal cell turnover of overlying epidermal skin layers. The "top down" concept involves a more differentiated cell undergoing genetic modifications leading to dedifferentiation, giving rise to cancer initiating cells (CICs). This review explores both concepts, to paint a picture of the skin SCC cell of origin, the underlying biology, and also how this knowledge might be exploited to develop novel therapies.


Assuntos
Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Epiderme/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/patologia , Pele/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Desdiferenciação Celular , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Epiderme/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genética
19.
J Natl Cancer Inst ; 107(9)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063791

RESUMO

BACKGROUND: The developmental transcription factor Grainyhead-like 3 (GRHL3) plays a critical tumor suppressor role in the mammalian epidermis through direct regulation of PTEN and the PI3K/AKT/mTOR signaling pathway. GRHL3 is highly expressed in all tissues derived from the surface ectoderm, including the oral cavity, raising a question about its potential role in suppression of head and neck squamous cell carcinoma (HNSCC). METHODS: We explored the tumor suppressor role of Grhl3 in HNSCC using a conditional knockout (Grhl3 (∆/-) /K14Cre (+) ) mouse line (n = 26) exposed to an oral chemical carcinogen. We defined the proto-oncogenic pathway activated in the HNSCC derived from these mice and assessed it in primary human HNSCC samples, normal oral epithelial cell lines carrying shRNA to GRHL3, and human HNSCC cell lines. Data were analyzed with two-sided chi square and Student's t tests. RESULTS: Deletion of Grhl3 in oral epithelium in mice did not perturb PTEN/PI3K/AKT/mTOR signaling, but instead evoked loss of GSK3B expression, resulting in stabilization and accumulation of c-MYC and aggressive HNSCC. This molecular signature was also evident in a subset of primary human HNSCC and HNSCC cell lines. Loss of Gsk3b in mice, independent of Grhl3, predisposed to chemical-induced HNSCC. Restoration of GSK3B expression blocked proliferation of normal oral epithelial cell lines carrying shRNA to GRHL3 (cell no., Day 8: Scramble ctl, 616±21.8 x 10(3) vs GRHL3-kd, 1194±44 X 10(3), P < .001; GRHL3-kd vs GRHL3-kd + GSK3B, 800±98.84 X 10(3), P = .003) and human HNSCC cells. CONCLUSIONS: We defined a novel molecular signature in mammalian HNSCC, suggesting new treatment strategies targeting the GRHL3/GSK3B/c-MYC proto-oncogenic network.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Transcriptoma
20.
PLoS One ; 9(2): e89247, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586629

RESUMO

The Grainyhead-like 1 (GRHL1) transcription factor regulates the expression of desmosomal cadherin desmoglein 1 (Dsg1) in suprabasal layers of the epidermis. As a consequence, the epidermis of Grhl1-null mice displays fewer desmosomes that are abnormal in structure. These mice also exhibit mild chronic skin barrier defects as evidenced by altered keratinocyte terminal differentiation, increased expression of inflammatory markers and infiltration of the skin by immune cells. Exposure of Grhl1 (-/-) mice to a standard chemical skin carcinogenesis protocol results in development of fewer papillomas than in wild type control animals, but with a rate of conversion to squamous cell carcinoma (SCC) that is strikingly higher than in normal littermates. The underlying molecular mechanism differs from mice with conditional ablation of a closely related Grhl family member, Grhl3, in the skin, which develop SCC due to the loss of expression of phosphatase and tensin homolog (PTEN) and activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) signaling pathway.


Assuntos
Carcinoma de Células Escamosas/patologia , Permeabilidade da Membrana Celular , Epiderme/patologia , Papiloma/patologia , Proteínas Repressoras/fisiologia , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Carcinógenos/toxicidade , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Diferenciação Celular , Proliferação de Células , Epiderme/metabolismo , Imunofluorescência , Técnicas Imunoenzimáticas , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Camundongos Knockout , Papiloma/induzido quimicamente , Papiloma/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA