Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 30(11): 1652-1658, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36465844

RESUMO

Objective: The growing microbial resistance to antibiotics is a global public concern, which creates serious needs for newer antimicrobial agents. Antimicrobial peptides (AMPs) are increasingly exploited in drug development as therapeutic candidates. Here, we aimed to design and characterize a novel peptide with broad spectrum antimicrobial activity. Methods: Hybridization and sequence modification approaches were used to design the novel peptide, named HAZ, aiming at optimizing the physicochemical parameters involved in antimicrobial activity. Peptide activities were assessed alone or combined with different selected antibiotics against various sensitive and drug-resistant bacterial strains. In addition, the hemolysis and the cytotoxic activities of HAZ peptide were evaluated on human red blood cells and epithelial adenocarcinoma cells (A549), respectively. Results: HAZ peptide was sequentially modified to result in favored physicochemical parameters (helicity 95.24 %, hydrophobic ratio 47 %, and net charge of 8 + ). Functional assessment of HAZ revealed significant antimicrobial activity, with MIC values of 15 - 20 µM against tested bacterial strains. It also exhibited biofilm eradication activity at slightly higher concentrations. HAZ-antibiotics combinations exhibited a synergistic action mode that led to dramatic decrease in the MIC values for both HAZ peptide and the antibiotic. Such efficacy was accompanied with minimal hemolytic toxicity on human erythrocytes. Importantly, HAZ displayed promising anticancer activity against human lung cancer cells. Conclusion: Rationally-designed antimicrobial peptides offer promising alternatives to the current antibiotics for management of infectious diseases. HAZ peptide is a broad-spectrum AMP, and a promising candidate for antimicrobial and anticancer drug development.

2.
J Pharm Sci ; 111(2): 485-494, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728172

RESUMO

The conjugation of chitosan (CS) and folic acid (FA) was prepared and used to coat PLGA nanoparticles (NPs) that are loaded with Docetaxel (DTX) to target cancer cells that have lower pH and overexpression of folate receptors in comparison to normal cells. Three formulations had been prepared to reach the highest loading capacity (LC%) and encapsulation efficiency (EE%) and to study the effect of the amount of FA-CS on the drug release. The sizes, charges, homogeneity, surface morphology, LC% and EE% of the NPs were determined. The NPs were characterized using FTIR and XRD. In vitro release profiles of DTX from PLGA NPs, at pH 5.5 and 7.4 were determined. Finally, in vitro cytotoxicity assay on three cancer cell lines (RPMI 2650, Calu-3, and A549) was studied. The sizes of the three formulations ranged between 250.3±1.7 and 356.3±17.7. All prepared formulations showed acceptable monodispersity with highly positive charges. The EE% was above 85% and the LC% ranged between 6-35%. The in vitro release of DTX show an inverse relation to the amounts of FA-CS used and the pH of the dissolution medium. Coated PLGA NPs showed a significant difference in RPMI 2650, Calu-3, and A549 cell viability in comparison to free DTX. The NPs components were safe and non-toxic to human cells. In conclusion, coating PLGA NPs with FA-CS may be used as a good carrier for chemotherapeutic agents that selectively target carcinogenic tissues.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Quitosana/química , Docetaxel/química , Ácido Fólico/química , Humanos , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
3.
BMC Pharmacol Toxicol ; 21(1): 77, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198812

RESUMO

BACKGROUND: Imatinib is mainly metabolized by CYP3A4 and to a lesser extent by other isoenzymes, with N-desmethyl imatinib being its major equipotent metabolite. Being a CYP3A4 substrate, imatinib co-administration with CYP3A4 modulators would change its pharmacokinetic profile. The cancer chemoprevention potential and anticancer efficacy of many herbal products such as grape seed (GS) and green tea (GT) extracts had led to an increase in their concomitant use with anticancer agents. GS and GT extracts were demonstrated to be potent inhibitors of CYP3A4. The aim of this study is to investigate the effect of standardized GS and/or GT extracts at two different doses on the pharmacokinetics of imatinib and its metabolite, N-desmethyl imatinib, in SD-rats. METHODS: Standardized GS and/or GT extracts were administered orally once daily for 21 days, at low (l) and high (h) doses, 50 and 100 mg/kg, respectively, before the administration of a single intragastric dose of imatinib. Plasma samples were collected and analyzed for imatinib and N-desmethyl imatinib concentrations using LC-MS/MS method, then their non-compartmental pharmacokinetic parameters were determined. RESULTS: h-GS dose significantly decreased imatinib's Cmax and the [Formula: see text] by 61.1 and 72.2%, respectively. Similar effects on N-desmethyl imatinib's exposure were observed as well, in addition to a significant increase in its clearance by 3.7-fold. l-GT caused a significant decrease in imatinib's Cmax and [Formula: see text] by 53.6 and 63.5%, respectively, with more significant effects on N-desmethyl imatinib's exposure, which exhibited a significant decrease by 79.2 and 81.1%, respectively. h-GT showed similar effects as those of l-GT on the kinetics of imatinib and its metabolite. However, when these extracts were co-administered at low doses, no significant effects were shown on the pharmacokinetics of imatinib and its metabolite. Nevertheless, increasing the dose caused a significant decrease in Cmax of N-desmethyl imatinib by 71.5%. CONCLUSIONS: These results demonstrated that the pharmacokinetics of imatinib and N-desmethyl imatinib had been significantly affected by GS and/or GT extracts, which could be partially explained by the inhibition of CYP3A-mediated metabolism. However, the involvement of other kinetic pathways such as other isoenzymes, efflux and uptake transporters could be involved and should be characterized.


Assuntos
Extrato de Sementes de Uva/administração & dosagem , Interações Ervas-Drogas/fisiologia , Mesilato de Imatinib/farmacocinética , Extratos Vegetais/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Chá , Administração Oral , Animais , Mesilato de Imatinib/administração & dosagem , Injeções Intraperitoneais , Masculino , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Ratos Sprague-Dawley , Vitis
4.
Int J Nanomedicine ; 14: 7643-7663, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571869

RESUMO

Angiogenesis is the formation of new blood vessels from pre-existing vessels. It is a highly regulated process as determined by the interplay between pro-angiogenic and anti-angiogenic factors. Under certain conditions the balance between angiogenesis stimulators and inhibitors is altered, which results in a shift from physiological to pathological angiogenesis. Therefore, the goal of therapeutic targeting of angiogenic process is to normalize vasculature in target tissues by enhancing angiogenesis in disease conditions of reduced vascularity and blood flow, such as tissue ischemia, or alternatively to inhibit excessive and abnormal angiogenesis in disorders like cancer. Gold nanoparticles (AuNPs) are special particles that are generated by nanotechnology and composed of an inorganic core containing gold which is encircled by an organic monolayer. The ability of AuNPs to alter vasculature has captured recent attention in medical literature as potential therapeutic agents for the management of pathologic angiogenesis. This review provides an overview of the effects of AuNPs on angiogenesis and the molecular mechanisms and biomedical applications associated with their effects. In addition, the main synthesis methods, physical properties, uptake mechanisms, and toxicity of AuNPs are briefly summarized.


Assuntos
Tecnologia Biomédica/métodos , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Endocitose , Ouro/toxicidade , Humanos , Nanopartículas Metálicas/toxicidade
5.
Clin Pharmacol ; 10: 23-29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551915

RESUMO

BACKGROUND: Approximately 90% of patients with metastatic colorectal cancer fail therapy mainly due to resistance. Taking advantage of currently approved agents for treatment of disease conditions other than cancer for the identification of new adjuvant anticancer therapies is highly encouraged. Pramlintide is a parenteral antidiabetic agent that is currently approved for treatment of types 1 and 2 diabetes mellitus. OBJECTIVES: To address the antineoplastic potential of pramlintide in colorectal cancer and to evaluate the ability of pramlintide to enhance the cytotoxicity of 5-fluorouracil, oxaliplatin, and irinotecan against colorectal cancer cell lines expressing wild-type and mutant p53. MATERIALS AND METHODS: The antiproliferative effect of pramlintide alone or in combination with 5-fluorouracil, oxaliplatin, or irinotecan in HCT-116 and HT-29 colorectal cancer cell lines was investigated using MTT cell proliferation assay. IC50 values were calculated using Compusyn software 1.0. Synergy values (R) were calculated using the ratio of IC50 of each primary drug alone divided by combination IC50s. For each two pairs of experiments, Student's t-test was used for analysis. For combination studies, one-way analysis of variance and Tukey post hoc testing was performed using R 3.3.2 software. A p-value of <0.05 was considered significant. RESULTS: Pramlintide inhibited the growth of HCT-116 and HT-29 in a dose-dependent manner, with higher efficacy against the latter (IC50s; 48.67 and 9.10 µg/mL, respectively; p-value =0.013). Moreover, the addition of 5, 10, and 20 µg/mL of pramlintide to HCT-116 and HT-29 with 5-fluorouracil, oxaliplatin, or irinotecan induced the antiproliferative effect synergistically (R>1.6, p-value <0.05). CONCLUSION: Pramlintide enhances the cytotoxicity of conventional chemotherapy against colorectal cancer cell lines harboring wild-type or mutant p53. Thus, pramlintide is a promising potential adjuvant chemotherapy in colorectal cancer.

6.
Eur J Pharm Sci ; 115: 68-76, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29337216

RESUMO

As a promising long-acting inhaled formulation, liposomal ciprofloxacin (Lipo-CPFX) was characterized in the in vitro human lung epithelial Calu-3 cell monolayer system, compared to ciprofloxacin in solution (CPFX). Its modulated absorptive transport and uptake, and sustained inhibitory activity against induced pro-inflammatory interleukin-8 (IL-8) release were examined. The absorptive transport and uptake kinetics for Lipo-CPFX and CPFX were determined at 0.1-50 mg/ml in the Transwell system. The Lipo-CPFX transport was then challenged for mechanistic exploration via cell energy depletion, a reduced temperature, endocytosis and/or lipid fusion inhibition, and addition of excess non-loaded liposomes. The inhibitory activities of Lipo-CPFX and CPFX against lipopolysaccharide (LPS)-induced IL-8 release were assessed in a co-incubation or pre-incubation mode. In the tight Calu-3 cell monolayers, Lipo-CPFX yielded 15-times slower ciprofloxacin flux of absorptive transport and 5-times lower cellular drug uptake than CPFX. Its transport appeared to be transcellular; kinetically linear, proportional to encapsulated ciprofloxacin concentration; and consistent with the cell energy-independent lipid bilayer fusion mechanism. Lipo-CPFX was equipotent to CPFX in the anti-IL-8 releasing activity upon 24 h co-incubation with LPS. Additionally, Lipo-CPFX, but not CPFX, retained the anti-IL-8 releasing activity even 24 h after pre-incubation. In conclusion, Lipo-CPFX enabled slower absorptive lung epithelial cell transport and uptake of ciprofloxacin, apparently via the lipid bilayer fusion mechanism, and the sustained inhibitory activity against LPS-induced IL-8 release, compared to CPFX.


Assuntos
Ciprofloxacina/farmacologia , Células Epiteliais/efeitos dos fármacos , Interleucina-8/antagonistas & inibidores , Lipossomos/química , Lipossomos/farmacologia , Pulmão/efeitos dos fármacos , Linhagem Celular , Ciprofloxacina/química , Células Epiteliais/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA