Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39424745

RESUMO

In this work, we designed novel peptide conjugates with plant-based iridoid and lichen-derived depside derivatives to target the wild-type EGFR (WT) and its mutants, L858R and T790M/L858R/C797S triple mutant. These mutations are often expressed in multiple cancers, particularly lung cancer. Specifically, the iridoids included 7-deoxyloganetic acid (7-DGA) and loganic acid (LG), while the depside derivative was sekikaic acid (SK). These compounds are known for their innate anticancer properties and were conjugated with two separate peptide sequences KLPGWSG (K) and YSIPKSS (Y). These sequences have been shown to target EGFR in previous phage display library screening, although the mechanism is unknown. Thus, we created the di-conjugates for dual targeting and investigated their interactions of the di-conjugates and that of the neat peptides with the kinase domain of EGFR (WT) and the two mutants using molecular docking, molecular dynamics (MD) simulations, and MM-GBSA analysis. Docking studies revealed that the (7-DGA)2-K showed the highest binding affinity at - 9.3 kcal/mol with the L858R mutant, while (LG)2-Y displayed the highest binding affinity at - 9.0 kcal/mol for the triple mutant receptor. Our results indicated that several of the conjugates interacted with crucial residues of the kinase domain, including ASP855 and THR854 (activation loop), MET793 and PRO794 (hinge region), ARG841 (catalytic loop), and LYS728 and LEU718 of the glycine-rich P-loop. Interestingly, strong hydrophobic interactions were also observed with the C-terminal tail residues, such as PHE997 and ALA1000 as well as with ARG999 for the YSIPKSS peptide and most of the conjugates. The hydroxyl group of the cyclopentane ring and the oxygen of the pyran ring of the (7-DGA)2-peptide conjugates contributed to binding particularly in the hinge region, while the peptide components formed an extended structure that bound well into the C-lobe. The (SK)2-Y di-conjugate and KLPGWSG peptide formed hydrogen bonds with the SER797 residue of the triple mutant. Overall, our results show that the (7-DGA)2-K, di-conjugate, the (7-DGA)2-Y di-conjugate, and the neat YSIPKSS demonstrated strong and stable binding with the L858R mutant and the highly resistant triple mutant EGFR, respectively. The novel designed conjugates demonstrate potential for further optimization for laboratory studies aimed at developing new therapeutics for targeting specific EGFR mutant expressing cells.

2.
Biomimetics (Basel) ; 9(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329537

RESUMO

In this work, we utilized a biomimetic approach for targeting KATO (III) tumor cells and 3D tumoroids. Specifically, the binding interactions of the bioactive short peptide sequences ACSAG (A-pep) and LPHVLTPEAGAT (L-pep) with the fibroblast growth factor receptor (FGFR2) kinase domain was investigated for the first time. Both peptides have been shown to be derived from natural resources previously. We then created a new fusion trimer peptide ACSAG-LPHVLTPEAGAT-GASCA (Trimer-pep) and investigated its binding interactions with the FGFR2 kinase domain in order to target the fibroblast growth factor receptor 2 (FGFR2), which is many overexpressed in tumor cells. Molecular docking and molecular dynamics simulation studies revealed critical interactions with the activation loop, hinge and glycine-rich loop regions of the FGFR2 kinase domain. To develop these peptides for drug delivery, DOX (Doxorubicin) conjugates of the peptides were created. Furthermore, the binding of the peptides with the kinase domain was further confirmed through surface plasmon resonance studies. Cell studies with gastric cancer cells (KATO III) revealed that the conjugates and the peptides induced higher cytotoxicity in the tumor cells compared to normal cells. Following confirmation of cytotoxicity against tumor cells, the ability of the conjugates and the peptides to penetrate 3D spheroids was investigated by evaluating their permeation in co-cultured spheroids grown with KATO (III) and colon tumor-associated fibroblasts (CAFs). Results demonstrated that Trimer-pep conjugated with DOX showed the highest permeation, while the ACSAG conjugate also demonstrated reasonable permeation of the drug. These results indicate that these peptides may be further explored and potentially utilized to create drug conjugates for targeting tumor cells expressing FGFR2 for developing therapeutics.

3.
3 Biotech ; 14(9): 210, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39188534

RESUMO

Biological control agents are preferred over chemicals for managing plant diseases, with Trichoderma species being particularly effective against soil-borne pathogens. This study examines the use of a highly antagonistic strain, Trichoderma asperellum A10, and a virulent strain, Sclerotium rolfsii Sr38, identified and confirmed through ITS, ß-tubulin (T. asperellum), TEF 1α, and RPB2 (S. rolfsii) sequences. In vitro and in planta experiments compared the antagonistic potential of A10 with other antagonistic fungi and fungicides against S. rolfsii. A10 achieved 94.66% inhibition of S. rolfsii in dual culture assays. In greenhouse trials with tomato variety Pusa Ruby, A10 showed significant pre- and post-inoculation effectiveness, with disease inhibition of 86.17 and 80.60%, respectively, outperforming T. harzianum, Propiconazole, and Carbendazim. Additionally, microbial priming with A10 was explored to enhance plant defense responses. Pre-treatment of tomato plants with T. asperellum A10 led to significant upregulation of several defense-related genes, including PR1, PR2, PR3, PR5, PR12, thioredoxin peroxidase, catalase, polyphenol oxidase, phenylalanine ammonia lyase, isochorismate synthase, laccase, prosystemin, multicystatin, WRKY31, MYC2, lipoxygenase A, lipoxygenase C, proteinase inhibitor I, proteinase inhibitor II, and ethylene response 1 associated with various signaling pathways such as salicylic acid (SA)-mediated and jasmonic acid/ethylene (JA/ET)-mediated responses. This upregulation was particularly evident at 48 h post-inoculation in A10-primed plants challenged with S. rolfsii, inducing resistance against collar rot disease. This study underscores the effectiveness of T. asperellum A10 in controlling collar rot and highlights its potential for inducing resistance in plants through microbial priming, providing valuable insights into sustainable disease management strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04040-4.

4.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894421

RESUMO

Steel structures are susceptible to corrosion due to their exposure to the environment. Currently used non-destructive techniques require inspector involvement. Inaccessibility of the defective part may lead to unnoticed corrosion, allowing the corrosion to propagate and cause catastrophic structural failure over time. Autonomous corrosion detection is essential for mitigating these problems. This study investigated the effect of the type of encoder-decoder neural network and the training strategy that works the best to automate the segmentation of corroded pixels in visual images. Models using pre-trained DesnseNet121 and EfficientNetB7 backbones yielded 96.78% and 98.5% average pixel-level accuracy, respectively. Deeper EffiecientNetB7 performed the worst, with only 33% true-positive values, which was 58% less than ResNet34 and the original UNet. ResNet 34 successfully classified the corroded pixels, with 2.98% false positives, whereas the original UNet predicted 8.24% of the non-corroded pixels as corroded when tested on a specific set of images exclusive to the investigated training dataset. Deep networks were found to be better for transfer learning than full training, and a smaller dataset could be one of the reasons for performance degradation. Both fully trained conventional UNet and ResNet34 models were tested on some external images of different steel structures with different colors and types of corrosion, with the ResNet 34 backbone outperforming conventional UNet.

5.
Cureus ; 15(11): e48382, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38060755

RESUMO

Systemic lupus erythematosus (SLE) is a multi-system disorder with a variety of clinical presentations. A wide range of renal vascular lesions (VL) is described predominantly in adult patients. The exact prevalence of renal VL in the pediatric SLE (pSLE) population is yet to be determined. A 10-year-old female patient with lupus nephritis (LN) presented with deteriorating kidney function. An exhaustive array of clinical-biochemical and pathological evaluations resulted in a diagnosis of class IV LN with thrombotic microangiopathy (TMA) associated with malignant hypertension and hypocomplementemia. Renal VL is overlooked or underreported in SLE patients, as it is neither accorded much importance in the International Society of Nephrology/Renal Pathology Society (ISN/RPS) classification nor in the activity and chronicity scoring. The TMA lesions in LN patients can be managed following the recently devised PLASMIC score; hence, reporting such VL has therapeutic implications.

6.
Expert Rev Vaccines ; 20(10): 1273-1290, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34550859

RESUMO

INTRODUCTION: Vaccination is so far the most effective way of eradicating infections. Rapidly emerging drug resistance against infectious diseases and chemotherapy-related toxicities in cancer warrant immediate vaccine development to save mankind. Subunit vaccines alone, however, fail to elicit sufficiently strong and long-lasting protective immunity against deadly pathogens. Nanoparticle (NP)-based delivery vehicles like microemulsions, liposomes, virosomes, nanogels, micelles and dendrimers offer promising strategies to overcome limitations of traditional vaccine adjuvants. Nanovaccines can improve targeted delivery, antigen presentation, stimulation of body's innate immunity, strong T cell response combined with safety to combat infectious diseases and cancers. Further, nanovaccines can be highly beneficial to generate effective immutherapeutic formulations against cancer. AREAS COVERED: This review summarizes the emerging nanoparticle strategies highlighting their success and challenges in preclinical and clinical trials in infectious diseases and cancer. It provides a concise overview of current nanoparticle-based vaccines, their adjuvant potential and their cellular delivery mechanisms. EXPERT OPINION: The nanovaccines (50-250 nm in size) are most efficient in terms of tissue targeting, prolonged circulation and preferential uptake by the professional APCs chiefly due to their small size. More rational designing, improved antigen loading, extensive functionalization and targeted delivery are some of the future goals of ideal nanovaccines.


Assuntos
Nanopartículas , Vacinação/métodos , Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Humanos , Tamanho da Partícula , Vacinas/imunologia
7.
Development ; 147(21)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32541007

RESUMO

Wilms' tumor (WT) morphologically resembles the embryonic kidney, consisting of blastema, epithelial and stromal components, suggesting tumors arise from the dysregulation of normal development. ß-Catenin activation is observed in a significant proportion of WTs; however, much remains to be understood about how it contributes to tumorigenesis. Although activating ß-catenin mutations are observed in both blastema and stromal components of WT, current models assume that activation in the blastemal lineage is causal. Paradoxically, studies performed in mice suggest that activation of ß-catenin in the nephrogenic lineage results in loss of nephron progenitor cell (NPC) renewal, a phenotype opposite to WT. Here, we show that activation of ß-catenin in the stromal lineage non-autonomously prevents the differentiation of NPCs. Comparisons of the transcriptomes of kidneys expressing an activated allele of ß-catenin in the stromal or nephron progenitor cells reveals that human WT more closely resembles the stromal-lineage mutants. These findings suggest that stromal ß-catenin activation results in histological and molecular features of human WT, providing insights into how alterations in the stromal microenvironment may play an active role in tumorigenesis.


Assuntos
Diferenciação Celular , Néfrons/patologia , Células-Tronco/metabolismo , Tumor de Wilms/metabolismo , Tumor de Wilms/patologia , beta Catenina/metabolismo , Animais , Sequência de Bases , Padronização Corporal/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Epitélio/embriologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Integrases/metabolismo , Mesoderma/embriologia , Camundongos , Mutação/genética , Néfrons/metabolismo , Organogênese/genética , Osteogênese/genética , Células Estromais/metabolismo , Células Estromais/patologia , Transcriptoma/genética , Tumor de Wilms/genética , beta Catenina/genética
8.
Dev Biol ; 440(1): 13-21, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705331

RESUMO

Formation of a functional kidney depends on the balance between renewal and differentiation of nephron progenitors. Failure to sustain this balance can lead to kidney failure or stem cell tumors. For nearly 60 years, we have known that signals from an epithelial structure known as the ureteric bud were essential for maintaining this balance. More recently it was discovered that one molecule, Wnt9b, was necessary for both renewal and differentiation of the nephron progenitor cells. How one ligand signaling through one transcription factor promoted two seemingly contradictory cellular processes was unclear. In this study, we show that Wnt9b/beta-catenin signaling alone is sufficient to promote both renewal and differentiation. Moreover, we show that discrete levels of beta-catenin can promote these two disparate fates, with low levels fostering progenitor renewal and high levels driving differentiation. These results provide insight into how Wnt9b regulates distinct target genes that balance nephron progenitor renewal and differentiation.


Assuntos
Néfrons/fisiologia , beta Catenina/metabolismo , beta Catenina/fisiologia , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Néfrons/embriologia , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
9.
ACS Appl Bio Mater ; 1(4): 999-1018, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34996141

RESUMO

Numerous experimental DNA vaccines have been tested against Leishmania, whose clinical use is mostly limited due to insufficient CD8+ T cell-mediated immunity arising from poor gene delivery or presentation. Hence, there remains an important public health demand for a better vaccine adjuvant to combat leishmaniasis: ensuring proper antigen delivery coupled with strong cell mediated immune (CMI) response. To this end, we herein report, for the first time, novel cationic liposomes containing monophosphoryl lipid A (MPLA) intercalated into the 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipid bilayer as an adjuvant for a DNA vaccine to enhance antileishmanial immunity. Interestingly, this MPLA-liposomal formulation strongly amplified the Leishmania donovani cysteine protease C (Ldcpc) DNA vaccine (i.e., pVAX1-cpc)-induced endogenous T cell and antibody responses with a Th1 biased profile. MPLA-liposomes could activate the splenic DCs in vivo and increased magnitude of antigen-specific polyfunctional CD4+ and CD8+ T cells together with CD8+ IFN-γ+ memory generation in BALB/c mice. Most importantly, in comparison to the mice receiving 'naked' pVAX1-cpc, immunization with MPLA-liposomal pVAX1-cpc DNA resulted in substantial reduction in parasite load, in association with reduced IL-10, IL-4 and TGF-ß along with enhanced IFN-γ/IL-4 and IFN-γ/IL-10 cytokine ratios. Parasite burden inversely correlated with frequency of CD4+ and CD8+ T cells producing postinfection IFN-γ, IL-2, and TNF-α simultaneously, resulting in almost sterile protection (>98%) conferred by the DNA vaccine entrapped in MPLA-liposomes. This DNA vaccine afforded potent central and effector memory cell formation required for long-lasting immunity. Hence, this novel MPLA-DSPC adjuvant formulation approach could be a safe, biocompatible, and amenable choice as a strong immunostimulating agent delivery system holding promise against leishmaniasis and several other infectious diseases in the near future.

10.
Mol Endocrinol ; 30(3): 302-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26849466

RESUMO

The steroid hormones 17ß-estradiol and progesterone are critical regulators of endometrial stromal cell differentiation, known as decidualization, which is a prerequisite for successful establishment of pregnancy. The present study using primary human endometrial stromal cells (HESCs) addressed the role of estrogen receptor-α (ESR1) in decidualization. Knockdown of ESR1 transcripts by RNA interference led to a marked reduction in decidualization of HESCs. Gene expression profiling at an early stage of decidualization indicated that ESR1 negatively regulates several cell cycle regulatory factors, thereby suppressing the proliferation of HESCs as these cells enter the differentiation program. ESR1 also controls the expression of WNT4, FOXO1, and progesterone receptor (PGR), well-known mediators of decidualization. Whereas ESR1 knockdown strongly inhibited the expression of FOXO1 and WNT4 transcripts within 24 hours of the initiation of decidualization, PGR expression remained unaffected at this early time point. Our study also revealed a major role of cAMP signaling in influencing the function of ESR1 during decidualization. Using a proteomic approach, we discovered that the cAMP-dependent protein kinase A (PKA) phosphorylates Mediator 1 (MED1), a subunit of the mediator coactivator complex, during HESC differentiation. Using immunoprecipitation, we demonstrated that PKA-phosphorylated MED1 interacts with ESR1. The PKA-dependent phosphorylation of MED1 was also correlated with its enhanced recruitment to estrogen-responsive elements in the WNT4 gene. Knockdown of MED1 transcripts impaired the expression of ESR1-induced WNT4 and FOXO1 transcripts and blocked decidualization. Based on these findings, we conclude that modulation of ESR1-MED1 interactions by cAMP signaling plays a critical role in human decidualization.


Assuntos
Decídua/metabolismo , Endométrio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Ciclo Celular , Diferenciação Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica , Humanos , Fosforilação , Progesterona/farmacologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Transfecção
11.
J Cell Sci ; 128(23): 4293-305, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490995

RESUMO

The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/embriologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Citoesqueleto/genética , Células Epiteliais/citologia , Camundongos , Proteína cdc42 de Ligação ao GTP/genética
13.
Chemistry ; 21(45): 15914-8, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26404672

RESUMO

A mild and efficient one-pot method has been developed for the stereoselective synthesis of structurally diverse novel iminosugar C-alkynylglycosides. The generality of this methodology has been demonstrated with a wide variety of amines and copper acetylides. This one-pot method has been exploited in the synthesis of new class of DNA cross-linking agents, polyhydroxy 1-vinyl-tetrahydroindolizine derivatives.

14.
PLoS Negl Trop Dis ; 8(8): e3091, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144181

RESUMO

BACKGROUND: With the paucity of new drugs and HIV co-infection, vaccination remains an unmet research priority to combat visceral leishmaniasis (VL) requiring strong cellular immunity. Protein vaccination often suffers from low immunogenicity and poor generation of memory T cells for long-lasting protection. Cysteine proteases (CPs) are immunogenic proteins and key mediators of cellular functions in Leishmania. Here, we evaluated the vaccine efficacies of CPs against VL, using cationic liposomes with Toll like receptor agonists for stimulating host immunity against L. donovani in a hamster model. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant CPs type I (cpb), II (cpa) and III (cpc) of L. donovani were tested singly and in combination as a triple antigen cocktail for antileishmanial vaccination in hamsters. We found the antigens to be highly immunoreactive and persistent anti-CPA, anti-CPB and anti-CPC antibodies were detected in VL patients even after cure. The liposome-entrapped CPs with monophosphoryl lipid A-Trehalose dicorynomycolate (MPL-TDM) induced significantly high nitric oxide (up to 4 fold higher than controls) mediated antileishmanial activity in vitro, and resulted in strong in vivo protection. Among the three CPs, CPC emerged as the most potent vaccine candidate in combating the disease. Interestingly, a synergistic increase in protection was observed with liposomal CPA, CPB and CPC antigenic cocktail which reduced the organ parasite burden by 1013-1016 folds, and increased the disease-free survival of >80% animals at least up to 6 months post infection. Robust secretion of IFN-γ and IL-12, along with concomitant downregulation of Th2 cytokines, was observed in cocktail vaccinates, even after 3 months post infection. CONCLUSION/SIGNIFICANCE: The present study is the first report of a comparative efficacy of leishmanial CPs and their cocktail using liposomal formulation with MPL-TDM against L. donovani. The level of protection attained has not been reported for any other subcutaneous single or polyprotein vaccination against VL.


Assuntos
Antígenos de Protozoários , Fatores Corda/química , Cisteína Proteases/química , Leishmania donovani/imunologia , Lipídeo A/análogos & derivados , Lipossomos , Vacinas Protozoárias , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Cátions , Cricetinae , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Leishmaniose/imunologia , Leishmaniose/prevenção & controle , Lipídeo A/química , Lipossomos/química , Lipossomos/farmacocinética , Mesocricetus , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia
15.
Pediatr Blood Cancer ; 61(2): 198-205, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24115727

RESUMO

BACKGROUND: The Yes-associated-protein-1 (YAP1) is a novel, direct regulator of stem cell genes both in development and cancer. FAT4 is an upstream regulator that induces YAP1 cytosolic sequestering by phosphorylation (p-Ser 127) and therefore inhibits YAP1-dependent cellular proliferation. We hypothesized that loss of FAT4 signaling would result in expansion of the nephron progenitor population in kidney development and that YAP1 subcellular localization would be dysregulated in Wilms tumor (WT), an embryonal malignancy that retains gene expression profiles and histologic features reminiscent of the embryonic kidney. METHODS: Fetal kidneys from Fat4(-/-) mice were harvested at e18.5 and markers of nephron progenitors were investigated using immunohistochemical analysis. To examine YAP1 subcellular localization in WT, a primary WT cell line (VUWT30) was analyzed by immunofluorescence. Forty WT specimens evenly distributed between favorable and unfavorable histology (n = 20 each), and treatment failure or success (n = 20 each) was analyzed for total and phosphorylated YAP1 using immunohistochemistry and Western blot. RESULTS: Fat4(-/-) mouse fetal kidneys exhibit nuclear YAP1 with increased proliferation and expansion of nephron progenitor cells. In contrast to kidney development, subcellular localization of YAP1 is dysregulated in WT, with a preponderance of nuclear p-YAP1. By Western blot, median p-YAP1 quantity was 5.2-fold greater in unfavorable histology WT (P = 0.05). CONCLUSIONS: Fetal kidneys in Fat4(-/-) mice exhibit a phenotype reminiscent of nephrogenic rests, a WT precursor lesion. In WT, YAP1 subcellular localization is dysregulated and p-YAP1 accumulation is a novel biomarker of unfavorable histology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Rim/patologia , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Tumor de Wilms/patologia , Animais , Western Blotting , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Proliferação de Células , Células Cultivadas , Pré-Escolar , Embrião de Mamíferos/metabolismo , Feminino , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Rim/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Knockout , Néfrons/metabolismo , Néfrons/patologia , Fosforilação , Transporte Proteico , Células-Tronco/metabolismo , Células-Tronco/patologia , Frações Subcelulares , Fatores de Transcrição , Tumor de Wilms/metabolismo , Proteínas de Sinalização YAP
16.
Nat Cell Biol ; 15(9): 1035-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23974041

RESUMO

Present models suggest that the fate of the kidney epithelial progenitors is solely regulated by signals from the adjacent ureteric bud. The bud provides signals that regulate the survival, renewal and differentiation of these cells. Recent data suggest that Wnt9b, a ureteric-bud-derived factor, is sufficient for both progenitor cell renewal and differentiation. How the same molecule induces two seemingly contradictory processes is unknown. Here, we show that signals from the stromal fibroblasts cooperate with Wnt9b to promote differentiation of the progenitors. The atypical cadherin Fat4 encodes at least part of this stromal signal. Our data support a model whereby proper kidney size and function is regulated by balancing opposing signals from the ureteric bud and stroma to promote renewal and differentiation of the nephron progenitors.


Assuntos
Caderinas/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Rim/metabolismo , Células-Tronco/metabolismo , Células Estromais/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Caderinas/genética , Comunicação Celular , Diferenciação Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Regulação da Expressão Gênica , Humanos , Rim/citologia , Rim/crescimento & desenvolvimento , Tamanho do Órgão , Transdução de Sinais , Células-Tronco/citologia , Células Estromais/citologia , Proteínas Supressoras de Tumor/genética , Proteínas Wnt/genética
17.
PLoS One ; 8(5): e65010, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23705027

RESUMO

We have designed a dodecamer d-AGATCTAGATCT (RY12) with alternate oligopurines and oligopyrimidines tracts and its homologous 28 bp hairpin oligomer (RY28) that forms a triple helix only in the presence of a pentapeptide REWER. An intermolecular triplex is formed by the single strand invasion of the RY28 duplex by RY12 in the presence of REWER. 5'- oligopurine end of RY12 binds to oligopurine sequence of RY28 in a parallel orientation and its oligopyrimidine stretch then changes strand and adopts an antiparallel orientation with the other strand of the duplex. Evidence for the formation of the triplex come from our studies of the UV melting curves, UV mixing curves, gel retardation assay, and chemical sequencing of 1∶1 mixture of dodecamer and hairpin oligonucleotides in the presence and absence of the peptide REWER. RY12 exists as a duplex that melts at 35°C. The hairpin (RY28) melts at 68°C. 1∶1 mixture of RY12 and RY28 in the absence of REWER gives a biphasic transition curve with thermodynamic properties corresponding to those of the melting of the duplex of RY12 and the hairpin RY28. However, the melting curve of this mixture is triphasic in the presence of the REWER; the thermodynamic parameters associated with the first phase (melting of the duplex of RY12), second phase (melting of the triplex) and the third phase (melting of the hairpin) show dependence on the molar ratio of peptide to oligonucleotides. Under appropriate conditions, gel retardation assay showed a shifted band that corresponds to a possible triplex. Chemical sequencing of KMnO4 and DEPC treated mixture of RY12, RY28 and REWER revealed the footprint of triplex.


Assuntos
Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Conformação de Ácido Nucleico/efeitos da radiação , Desnaturação de Ácido Nucleico/efeitos da radiação , Oligonucleotídeos/genética , Análise de Sequência de DNA , Temperatura de Transição/efeitos da radiação , Raios Ultravioleta
18.
Endocrinology ; 154(1): 446-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142810

RESUMO

Differentiation of endometrial stromal cells into decidual cells is a prerequisite for successful embryo implantation. Our previous studies in the mouse have shown that bone morphogenetic protein 2 (BMP2), a morphogen belonging to the TGFß superfamily, is essential for this differentiation process. BMP2 is markedly induced in human primary endometrial stromal cells (HESCs) as they undergo differentiation in response to steroid hormones and cAMP. The present study was undertaken to identify the BMP2-mediated molecular pathways in primary cultures of HESCs during decidualization. Using gene expression profiling, we identified wingless-related murine mammary tumor virus integration site 4 (WNT4) as a target of BMP2 regulation during decidualization. Attenuation of WNT4 expression in HESCs by small interfering RNA administration greatly reduced BMP2-induced stromal differentiation. Additionally, adenovirus-mediated overexpression of WNT4 in HESCs markedly advanced the differentiation program, indicating that it is a key regulator of decidualization. The stimulatory effect of WNT4 was accompanied by the accumulation of active ß-catenin in the nuclei of decidualizing stromal cells, indicating the involvement of the canonical WNT signaling pathway. Functional inhibition of WNT4/ß-catenin pathway by Dickkopf-1, an inhibitor of the canonical WNT signaling, or small interfering RNA-mediated silencing of ß-catenin expression, greatly reduced the BMP2- and WNT4-induced decidualization. Gene expression profiling revealed that Forkhead box protein O1, a forkhead family transcription factor and previously reported regulator of HESC differentiation, is a common downstream mediator of both BMP2 and WNT4 signaling. Taken together, these studies uncovered a linear pathway involving BMP2, WNT4/ß-catenin, and Forkhead box protein O1 that operates in human endometrium to critically control decidualization.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Endométrio/citologia , Células Estromais/citologia , Células Estromais/metabolismo , Proteína Wnt4/metabolismo , beta Catenina/metabolismo , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular/genética , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , RNA Interferente Pequeno , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Wnt4/genética , beta Catenina/genética
19.
J Biol Chem ; 287(23): 19622-30, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22514284

RESUMO

Concerted actions of estrogen and progesterone via their cognate receptors orchestrate changes in the uterine tissue, regulating implantation during early pregnancy. The uterine stromal cells undergo steroid-dependent differentiation into morphologically and functionally distinct decidual cells, which support embryonic growth and survival. The hormone-regulated pathways underlying this unique cellular transformation are not fully understood. Previous studies in the mouse revealed that, following embryo attachment, de novo synthesis of estrogen by the decidual cells is critical for stromal differentiation. In this study we report that Fos-related antigen 1 (FRA-1), a member of the Fos family of transcription factors, is a downstream target of regulation by intrauterine estrogen. FRA-1 expression was localized in the differentiating uterine stromal cells surrounding the implanted embryo. Attenuation of estrogen receptor α (Esr1) expression by siRNA mediated silencing in primary uterine stromal cells suppressed FRA-1 expression. Furthermore, chromatin immunoprecipitation demonstrated direct recruitment of ESR1 to an estrogen response element in the Fra-1 promoter. Down-regulation of Fra-1 expression during in vitro decidualization blocked stromal differentiation and resulted in a marked decrease in stromal cell migration. Interestingly, FRA-1 controls the expression of matrix metalloproteinases MMP9 and MMP13, which are critical modulators of stromal extracellular matrix remodeling. Collectively, these results suggest that FRA-1, induced in response to estrogen signaling via ESR1, is a key regulator of stromal differentiation and remodeling during early pregnancy.


Assuntos
Diferenciação Celular/fisiologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Gravidez/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Útero/metabolismo , Animais , Movimento Celular/fisiologia , Implantação do Embrião/fisiologia , Receptor alfa de Estrogênio/genética , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Metaloproteinase 13 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Células Estromais/citologia , Células Estromais/metabolismo , Útero/citologia
20.
Organogenesis ; 7(3): 180-90, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22027435

RESUMO

Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.


Assuntos
Polaridade Celular/fisiologia , Doenças Renais Císticas/patologia , Rim/citologia , Animais , Dípteros/citologia , Células Epiteliais/metabolismo , Humanos , Rim/embriologia , Rim/metabolismo , Doenças Renais Císticas/metabolismo , Organogênese , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA