Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522952

RESUMO

Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326166

RESUMO

Drought is a major environmental threat to agricultural productivity and food security across the world. Therefore, addressing the detrimental effects of drought on vital crops like soybean has a significant impact on sustainable food production. Priming plants with organic compounds is now being considered as a promising technique for alleviating the negative effects of drought on plants. In the current study, we evaluated the protective functions of ethanol in enhancing soybean drought tolerance by examining the phenotype, growth attributes, and several physiological and biochemical mechanisms. Our results showed that foliar application of ethanol (20 mM) to drought-stressed soybean plants increased biomass, leaf area per trifoliate, gas exchange features, water-use-efficiency, photosynthetic pigment contents, and leaf relative water content, all of which contributed to the improved growth performance of soybean under drought circumstances. Drought stress, on the other hand, caused significant accumulation of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, and malondialdehyde, as well as an increase of electrolyte leakage in the leaves, underpinning the evidence of oxidative stress and membrane damage in soybean plants. By comparison, exogenous ethanol reduced the ROS-induced oxidative burden by boosting the activities of antioxidant enzymes, including peroxidase, catalase, glutathione S-transferase, and ascorbate peroxidase, and the content of total flavonoids in soybean leaves exposed to drought stress. Additionally, ethanol supplementation increased the contents of total soluble sugars and free amino acids in the leaves of drought-exposed plants, implying that ethanol likely employed these compounds for osmotic adjustment in soybean under water-shortage conditions. Together, our findings shed light on the ethanol-mediated protective mechanisms by which soybean plants coordinated different morphophysiological and biochemical responses in order to increase their drought tolerance.

3.
Physiol Plant ; 172(2): 334-350, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32797626

RESUMO

Exposure to drought stress negatively affects plant productivity and consequently threatens global food security. As global climates change, identifying solutions to increase the resilience of plants to drought is increasingly important. Several chemical treatments have recently emerged as promising techniques for various individual and combined abiotic stresses. This study shows compelling evidence on how acetic acid application promotes drought acclimation responses in soybean by investigating several morphological, physiological and biochemical attributes. Foliar applications of acetic acid to drought-exposed soybean resulted in improvements in root biomass, leaf area, photosynthetic rate and water use efficiency; leading to improved growth performance. Drought-induced accumulation of reactive oxygen species, and the resultant increased levels of malondialdehyde and electrolyte leakage, were considerably reverted by acetic acid treatment. Acetic acid-sprayed plants suffered less oxidative stress due to the enhancement of antioxidant defense mechanisms, as evidenced by the increased activities of superoxide dismutase, ascorbate peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Improved shoot relative water content was also linked to the increased levels of soluble sugars and free amino acids, indicating a better osmotic adjustment following acetic acid treatment in drought-exposed plants. Acetic acid also increased stem/root, leaf/stem and leaf/root mineral ratios and improved overall mineral status in drought-stressed plants. Taken together, our results demonstrated that acetic acid treatment enabled soybean plants to positively regulate photosynthetic ability, water balance, mineral homeostasis and antioxidant responses; thereby suggesting acetic acid as a cost-effective and easily accessible chemical for the management of soybean growth and productivity in drought-prone areas.


Assuntos
Antioxidantes , Secas , Aclimatação , Ácido Acético/farmacologia , Minerais , Osmorregulação , Fotossíntese , Glycine max , Estresse Fisiológico , Água
4.
J Biotechnol ; 325: 109-118, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188807

RESUMO

Complete submergence (Sub) imposes detrimental effects on growth and survival of crop plants, including rice. Here, we investigated the beneficial effects of reduced glutathione (GSH) in mitigating Sub-induced adverse effects in two high-yielding rice cultivars BRRI dhan29 and dhan52. Both cultivars experienced growth defects, severe yellowing, necrosis and chlorosis, when they were completely immersed in water for 14 days. The poor growth performance of these cultivars was linked to biomass reduction, decreased levels of photosynthetic pigments and proline, increased levels of H2O2 and malondialdehyde, and declined activities of enzymatic antioxidants like superoxide dismutase, ascorbate peroxidase, peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Pretreatment with exogenous GSH led to significant growth restoration in both cultivars exposed to Sub. The elevated Sub-tolerance promoted by GSH could partly be attributed to increased levels of chlorophylls, carotenoids, soluble proteins and proline. Exogenous GSH also mitigated Sub-induced oxidative damage, as evidenced from reduced levels of H2O2 and malondialdehyde in accordance with the increased activities of antioxidant enzymes. Results revealed that dhan52 was more tolerant to Sub-stress than dhan29, and GSH successfully rescued both cultivars from the damage of Sub-stress. Collectively, our findings provided an insight into the GSH-mediated active recovery of rice from Sub-stress, thereby suggesting that external supply of GSH may be an effective strategy to mitigate the adverse effects of Sub in rice.


Assuntos
Glutationa , Oryza , Antioxidantes , Catalase/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio , Oryza/metabolismo , Estresse Oxidativo , Plântula/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA