Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 17(18): e202200550, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35871609

RESUMO

Leishmaniasis, caused by the intramacrophage protozoan parasite Leishmania donovani, is a life-threatening yet neglected vector-borne disease. Few medications for the treatment of this disease are available. However, targeted delivery of drugs to macrophages remains a significant concern. Macrophages are equipped with many receptors, and therefore putting suitable ligands in the macrophage targeting drug delivery vehicle gained a lot of attention. One such receptor is the mannose receptor, abundantly expressed by macrophages. To treat this deadly disease, in this study, a mannose containing composite hydrogel is prepared by combining a self-aggregating short peptide (Nap-FFGE-NH2 , Pep-A) and a mannose containing non-aggregating peptide (Nap-FF-mannosyl, Pep-B). The self-aggregation of the composite hydrogel is evaluated using various spectroscopic and microscopic techniques. Intermolecular hydrogen bonding and π-π stacking lead to an antiparallel ß-sheet like arrangement of the peptides. Notably, the composite hydrogel showed shear-thinning and syneresis properties. Moreover, the composite hydrogel was found to be stable in cell-culture media, biodegradable and non-toxic to the macrophages. Both control and infected macrophages showed effective cell growth and proliferation when subjected to the composite 2D and 3D hydrogel matrix. When treated with Amphotericin B loaded composite hydrogel, the drug was effectively delivered to kill the parasite in the infected macrophages. Almost 3.5 fold decrease in the parasite burden was recorded when infected cells were treated with drug-loaded composite hydrogel. The injectability, biodegradability, non-cytotoxicity, and efficient drug delivery properties of the mannose-functionalized hydrogel make it a suitable candidate for the treatment of Leishmaniasis.


Assuntos
Leishmaniose Visceral , Leishmaniose , Humanos , Hidrogéis , Leishmaniose/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Manose/química , Manose/farmacologia , Peptídeos/farmacologia
2.
Sci Rep ; 12(1): 9108, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650270

RESUMO

Development of an artificial cornea can potentially fulfil the demand of donor corneas for transplantation as the number of donors is far less than needed to treat corneal blindness. Collagen-based artificial corneas stand out as a regenerative option, having promising clinical outcomes. Collagen crosslinked with chemical crosslinkers which modify the parent functional groups of collagen. However, crosslinkers are usually cytotoxic, so crosslinkers need to be removed from implants completely before application in humans. In addition, crosslinked products are mechanically weak and susceptible to enzymatic degradation. We developed a crosslinker free supramolecular gelation strategy using pyrene conjugated dipeptide amphiphile (PyKC) consisting of lysine and cysteine; in which collagen molecules are intertwined inside the PyKC network without any functional group modification of the collagen. The newly developed collagen implants (Coll-PyKC) are optically transparent and can effectively block UV light, are mechanically and enzymatically stable, and can be sutured. The Coll-PyKC implants support the growth and function of all corneal cells, trigger anti-inflammatory differentiation while suppressing the pro-inflammatory differentiation of human monocytes. Coll-PyKC implants can restrict human adenovirus propagation. Therefore, this crosslinker-free strategy can be used for the repair, healing, and regeneration of the cornea, and potentially other damaged organs of the body.


Assuntos
Colágeno , Córnea , Colágeno/metabolismo , Córnea/metabolismo , Humanos , Próteses e Implantes , Regeneração , Raios Ultravioleta
3.
Chem Commun (Camb) ; 58(39): 5909-5912, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35475487

RESUMO

Chemoselective construction of naphthoxazoles (NapOx) via a three-component annulation reaction enables proline selective labeling of peptides in solution or in solid-phase synthesis. The fluorogenic peptides possess low cytotoxicity, efficient cell membrane permeability and excellent bioimaging potential for biomedical applications.


Assuntos
Prolina , Técnicas de Síntese em Fase Sólida , Peptídeos , Técnicas de Síntese em Fase Sólida/métodos
4.
J Colloid Interface Sci ; 618: 98-110, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334366

RESUMO

Biocatalysis is an important area of modern research and is extensively explored by various industries to attain greener methods in various applications. Supramolecular interactions of short peptides have been under the scanner for developing artificial smart materials inspired from natural systems. Peptide-based artificial enzymes have been proved to show various enzyme-like activities. Therefore, immobilization of catalytic peptides on solid surfaces can be an extremely useful breakthrough for development of cost-effective catalytic formulations. In this work, a series of peptide amphiphiles (PAs) have been systematically analyzed to find the most effective catalyst with esterase like activity. The PA, containing a catalytic triad, 'Asp(Ser)His' in a branched manner, was further immobilized onto silica nanoparticles through covalent bonding method to obtain surface coated catalytic silica nanoparticles. The heterogenous catalytic formulation not only showed enhanced esterase activity than the self-assembled PA in homogenous phase, but also exceeded the activity of natural CV lipase. The catalytic formulation showed high stereoselectivity towards chiral esters. Moreover, the catalyst remained stable at higher temperature, in presence of various denaturant and retained its activity after several catalytic cycles. The ease of separation, robust nature, reusability and high stereoselectivity of the catalyst opens up the possibility of creating new generation heterogeneous catalysts for further industrial applications.


Assuntos
Enzimas Imobilizadas , Dióxido de Silício , Biocatálise , Catálise , Enzimas Imobilizadas/química , Lipase/química , Peptídeos , Dióxido de Silício/química
5.
Pharmaceutics ; 13(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34683894

RESUMO

Hydrogel scaffolds have attracted much interest in the last few years for applications in the field of bone and cartilage tissue engineering. These scaffolds serve as a convenient three-dimensional structure on which cells can grow while sensing the native environment. Natural polymer-based hydrogels are an interesting choice for such purposes, but they lack the required mechanical properties. In contrast, composite hydrogels formed by biopolymers and short peptide hydrogelators possess mechanical characteristics suitable for osteogenesis. Here, we describe how combining the short peptide hydrogelator, Pyrene-Lysine-Cysteine (PyKC), with other biopolymers, can produce materials that are suitable for tissue engineering purposes. The presence of PyKC considerably enhances the strength and water content of the composite hydrogels, and confers thixotropic behavior. The hyaluronic acid-PyKC composite hydrogels were shown to be biocompatible, with the ability to support osteogenesis, since MC3 T3-E1 osteoblast progenitor cells grown on the materials displayed matrix calcification and osteogenic differentiation. The osteogenesis results and the injectability of these composite hydrogels hold promise for their future utilization in tissue engineering.

6.
Langmuir ; 36(50): 15450-15462, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33306395

RESUMO

Supramolecular assembly of short peptides is a crucial process and has shown numerous potential applications as biomaterials. In the present work, the hydrogelation process of short peptides containing C-terminal "Lys-Cys" (KC) residues have been studied in detail. The N-terminal capping is found to be essential for effective gelation. Out of 12 peptides we studied, two of them could form hydrogels efficiently: Ac-VVKC-NH2 and Ac-FFKC-NH2. In both cases, the monomer-to-dimer formation through disulfide linkages by Cys residues controls the aggregation process. Interestingly, the presence of H2O2 facilitated the dimerization and thereby reduced the gelation time but could not impart much effect on the mechanical properties of the gels. Detailed rheological study revealed that both hydrogels are thixotropic in nature. Moreover, they are responsive to glutathione (GSH) due to the presence of disulfide linkages. However, the hydrogel of Ac-FFKC-NH2 is found to be stronger and more effective for biological applications. The thixotropic nature as well as a model drug release study in response to varying GSH concentration indicates the possible use of the hydrogel as an injectable local drug delivery vehicle. The hydrogel of Ac-FFKC-NH2 is noncytotoxic in nature. Three-dimensional cell proliferation has been found to be more effective than 2D, as it mimics the in vivo situation more closely if not exactly. In the present study, we have shown that both differentiated RAW macrophages and undifferentiated THP-1 monocytes could proliferate significantly within the 3D matrix of the hydrogel, without depicting any apparent cytotoxicity. Thus, the hydrogel of Ac-FFKC-NH2 has potential for application in localized drug administration and as a supporting biomaterial to study basic phenomena involving cell behavior.


Assuntos
Dissulfetos , Hidrogéis , Proliferação de Células , Peróxido de Hidrogênio , Peptídeos
7.
Chem Asian J ; 15(24): 4291-4296, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33137228

RESUMO

Widespread use of picric acid (PA) in chemical industries and deadly explosives poses dreadful impact on all living creatures as well as the natural environment and has raised global concerns that necessitate the development of fast and efficient sensing platforms. To address this issue, herein, we report a perylenediimide-peptide conjugate, PDI-1, for detection of PA in methanol. The probe displays typical aggregation caused quenching (ACQ) behaviour and exhibits a fluorescence "turn-off" sensory response towards PA which is unaffected by the presence of other interfering nitroaromatic compounds. The sensing mechanism involves PA induced aggregation of the probe into higher order tape like structures which leads to quenching of emission. The probe possesses a low detection limit of 5.6 nM or 1.28 ppb and a significantly high Stern-Volmer constant of 6.87×104  M-1 . It also exhibits conducting properties in the presence of PA vapours and thus represents a prospective candidate for vapour phase detection of PA. This is, to the best of our knowledge, the first example of a perylenediimide based probe that demonstrates extremely specific, selective and sensitive detection of PA and thus grasps the potential for application in practical scenarios.


Assuntos
Corantes Fluorescentes/química , Imidas/química , Perileno/análogos & derivados , Picratos/análise , Espectrometria de Fluorescência/métodos , Substâncias Explosivas/análise , Gases/química , Limite de Detecção , Peptídeos/química , Perileno/química
8.
Chem Commun (Camb) ; 56(23): 3393-3396, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32100740

RESUMO

A short peptide based hydrogel exhibits aqueous insolubility, thixotropy and efficient light induced syneresis. Upon irradiation with UV light, the hydrogel shrinks and expells ∼50% of the solvent. Syneresis is caused by light-triggered trans-cis isomerisation of an azobenzene moiety in the peptide derivative. This expulsion of solvent can be effectively exploited in the removal of low molecular weight contaminants in water.


Assuntos
Corantes/isolamento & purificação , Hidrogéis/química , Peptídeos/química , Poluentes Químicos da Água/isolamento & purificação , Compostos Azo/química , Compostos Azo/efeitos da radiação , Fracionamento Químico/métodos , Hidrogéis/efeitos da radiação , Peptídeos/efeitos da radiação , Solubilidade , Estereoisomerismo , Raios Ultravioleta , Água/química
9.
Chem Commun (Camb) ; 55(94): 14119-14122, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31687686

RESUMO

A new strategy to construct a transient supramolecular peptide amphiphile (SPA) and its vesicular aggregates is displayed. The construction of the amphiphile is assisted by the ternary complexation of cucurbit[8]uril and pH responsive imine bond formation. The transient assembly follows a pH clock set by urea/urease and hydrolysis of glucono delta-lactone (GdL). The transient assembly can be repeated for several cycles through feeding the system with the fuel (urea).


Assuntos
Peptídeos/química , Tensoativos/química , Concentração de Íons de Hidrogênio , Hidrólise , Lactonas/química , Lactonas/metabolismo , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Peptídeos/síntese química , Tensoativos/síntese química , Ureia/química , Ureia/metabolismo , Urease/química , Urease/metabolismo
10.
Langmuir ; 35(33): 10704-10724, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330107

RESUMO

Peptide amphiphiles (PAs) are extremely attractive as molecular building blocks, especially in the bottom-up fabrication of supramolecular soft materials, and have potential in many important applications across various fields of science and technology. In recent years, we have designed and synthesized a large group of peptide amphiphiles. This library of PAs has the ability to self-assemble into a variety of aggregates such as fibers, nanosphere, vesicles, nanosheet, nanocups, nanorings, hydrogels, and so on. The mechanism behind the formation of such a wide range of structures is intriguing. Each system has its individual method of aggregation and results in assemblies with important applications in areas including chemistry, biology, and materials science. The aim of this feature article is to bring together our recent achievements with designer PAs with respect to their self-assembly processes and applications. Emphasis is placed on rational design, mechanistic aspects of the self-assembly processes, and the applications of these PAs. We hope that this article will provide a conceptual demonstration of the different approaches taken toward the construction of these task-specific PAs.


Assuntos
Hidrogéis/química , Nanoestruturas/química , Peptídeos/química , Feminino , Humanos , Masculino , Retratos como Assunto
11.
Chem Sci ; 10(23): 5920-5928, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31360397

RESUMO

Unlike polymeric hydrogels, in the case of supramolecular hydrogels, the cross-linked network formation is governed by non-covalent forces. Hence, in these cases, the gelator molecules inside the network retain their characteristic physicochemical properties as no covalent modification is involved. Supramolecular hydrogels thus get dissolved easily in aqueous medium as the dissolution leads to a gain in entropy. Thus, any supramolecular hydrogel, insoluble in bulk water, is beyond the present understanding and hitherto not reported as well. Herein, we present a peptide-based (PyKC) hydrogel which remained insoluble in water for more than a year. Moreover, in the gel state, any movement of solvent or solute to and from the hydrogel is highly restricted resulting in a high degree of compartmentalization. The hydrogel could be re-dissolved in the presence of some biomolecules which makes it a prospective material for in vivo applications. Experimental studies and all atom molecular dynamics simulations revealed that a cysteine containing gelator forms dimers through disulfide linkage which self-assemble into PyKC layers with a distinct PyKC-water interface. The hydrogel is stabilized by intra-molecular hydrogen bonds within the peptide-conjugates and the π-π stacking of the pyrene rings. The unique confinement ability of the hydrogel is attributed to the slow dynamics of water which remains confined in the core region of PyKC via hydrogen bonds. The hydrogen bonds present in the confined water need activation energies to move through the water depleted hydrophobic environment of pyrene rings which significantly reduces water transport across the hydrogel. The compartmentalizing ability is effectively used to protect enzymes for a long time from denaturing agents like urea, heat or methanol. Overall, the presented system shows unique insolubility and confinement properties that could be a milestone in the research of soft-materials.

12.
Biomacromolecules ; 19(10): 3994-4002, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30119603

RESUMO

Development of biocompatible polymeric systems capable of cell adhesion and proliferation is a challenging task. Proper cross-linking of small cell adhesive peptide sequences is useful in this respect as it provides the inherent nontoxic environment as well as the cross-linked polymeric network to the cells for adhesion and proliferation. A multiple cross-linking strategy is applied to create a peptide-based cross-linked polymer. Covalent linkage through disulfide bond formation, supramolecular linkage using homoternary complexation by CB[8], and enzymatic cross-linking by HRP-mediated dimerization of tyrosine are used to prepare the cross-linked, peptide-based polymer decorated with cell-adhesive RGDS sequence. The supramolecular cross-linking via CB[8] provided stability as well as brings the RGDS sequences at the surface of the polymer particles. The order of cross-linking allowed to fine-tune the particle size of the polymer and polymer particles of wide range (200-1000 nm) can be prepared by varying the order. The cross-linked polymer particles (P1 and P2) were found to be stable at wide range of temperature and pH. Moreover, as intended, the polymer was noncytotoxic in nature and showed efficient cell adhesion and proliferation property, which can be used for further biological applications.


Assuntos
Biopolímeros/química , Adesão Celular , Proliferação de Células , Reagentes de Ligações Cruzadas/química , Macrófagos/fisiologia , Oligopeptídeos/química , Animais , Biopolímeros/farmacologia , Células Cultivadas , Peroxidase do Rábano Silvestre/metabolismo , Macrófagos/citologia , Camundongos , Oligopeptídeos/farmacologia , Tirosina/metabolismo
13.
Langmuir ; 34(28): 8355-8364, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29921124

RESUMO

Molecular organization of electron-deficient aromatic systems like perylenediimides (PDI) is extremely appealing, as they are potential candidates for organic electronics. The performance of these molecules in such applications primarily depends on the self-organization of the molecules. However, any correlation between the morphology of these self-assembled semiconducting molecules and their electrical performances has not yet been formulated. Herein, for the first time, we have made an effort to find such a correlation by studying the self-assembly, morphology, and their conducting properties for a peptide-PDI conjugate. The PDI conjugate formed fiber-like morphology in relatively nonpolar solvents (THF and CHCl3) while in more polar solvents (HFIP, MeOH, ACN, and acetone), spherical morphology could be found. Interestingly, the self-assembly and the morphologies showed a clear dependence on the solvent polarity. In polar solvents, the conjugate aggregates more efficiently than in the nonpolar solvents, and with decrease in solvent polarity, the dimension of the nanostructures increased. However, in all the tested solvents, irrespective of their polarity, the PDI-peptide conjugate adopts a right-handed helicity. To find a correlation between the morphologies with the conducting property, detailed electrical characterization of these nanostructures was carried out. While no significant change could be observed for the dc conductivities of these nanostructures, the ac conductivities show prominent difference at the low-frequency region. A dispersion of conductivity was observed for the nanospheres due to the polarization effect. A critical correlation between the nanostructures and the activation energy was observed as with decrease in radii of curvature of the aggregates the activation energy increases with an exception in the case of MeOH. The observed results suggest that the long-range transport of charge carriers is less favorable when the aggregates are small and closely packed.


Assuntos
Imidas/química , Nanoestruturas/química , Peptídeos/química , Perileno/análogos & derivados , Solventes/química , Perileno/química
14.
Biomacromolecules ; 18(11): 3630-3641, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28879763

RESUMO

This study reports the self-assembly and application of a naphthalene diimide (NDI)-appended peptide amphiphile (PA). H-bonding among the peptide moiety in conjunction with π-stacking between NDI and hydrophobic interactions within the alkyl chain are the major driving forces behind the stepwise aggregation of the PA to form hydrogels. The PA produced efficient self-assemblies in water, forming a nanofibrous network that further formed a self-supportive hydrogel. The molecule followed a three-step self-assembly mechanism. At a lower concentration (50 µM), it forms extremely small aggregates with a very low population of the molecules. With an increase in concentration, spherical aggregates are formed above 450 µM concentration. Importantly, this water-soluble conjugate was found to be nontoxic, cell permeable, and usable for cell imaging. Moreover, the aggregation process and consequently the emission behavior are highly responsive to the pH of the medium. Thus, the pH responsive aggregation and emission behavior has an extended biological application for assessing intracellular pH. The biocompatibility and intracellular pH determining capability suggest it is a promising candidate for use as a supramolecular material in biomedical applications.


Assuntos
Rastreamento de Células/métodos , Hidrogéis/química , Imidas/química , Naftalenos/química , Peptídeos/química , Técnicas Biossensoriais , Citoplasma/química , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/síntese química , Água/química
15.
Soft Matter ; 11(24): 4912-20, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26007304

RESUMO

A systematic study of the ternary complex formation process for aromatic amino acids using ucurbit[8]uril (CB[8]) and a viologen amphiphile shows that the affinity of the amino acid needs to be higher or in a comparable range to that of CB[8] for the amphiphile in order to form the ternary complex. Based on these observations, a supramolecular peptide amphiphile and its corresponding vesicle are prepared using a peptide containing an azobenzene moiety. The azobenzene group at the N-terminus of the peptide served as the second guest for CB[8]. The vesicles obtained from this peptide amphiphile show response to a number of external triggers. The trans-cis isomerization of the azobenzene group upon irradiation with UV-light of 365 nm leads to the breakdown of the ternary complex and eventually to the disruption of the vesicle. The deformation-reformation of the vesicle can be controlled by illuminating the disrupted solution with light of 420 nm as it facilitates the cis-trans isomerization. Thus, the vesicle showed a controlled and reversible response to UV-light with the ability for manipulation of the formation-deformation of the vesicle by the choice of an appropriate wavelength. The vesicle showed response to a stronger guest (1-adamantylamine) for CB[8], which displaces both the guests from the CB[8] cavity and consequently ruptures the vesicle structure. 2,6-Dihydroxynaphthalene acts as a competitive guest and thereby behaves as another external trigger for replacing the peptide from the CB[8] cavity by self-inclusion to form the ternary complex. Henceforth, it allows retaining the vesicle structure and results in the release of the peptide from the vesicle.


Assuntos
Lipossomos/química , Peptídeos/química , Tensoativos/química , Compostos Azo/química , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Lipossomos/efeitos da radiação , Naftóis/química , Raios Ultravioleta , Viologênios/química
16.
Langmuir ; 30(28): 8290-9, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24959928

RESUMO

A systematic study of the self-assembly process of a viologen-containing surfactant in aqueous medium is reported. Dodecyl-ethyl-viologendibromide (DDEV) is mixed in different proportions with dodecyltrimethylammonium bromide (DTAB), and the physicochemical properties of micellization are evaluated in order to find a suitable combination which does not interfere with the micellar properties of DTAB but introduces the characteristic properties of viologen. In this process, 1% doping of DDEV with DTAB was found to be the most appropriate, as negligible changes were observed in the physicochemical behavior of this system with respect to that of pure DTAB. The 1% DDEV-doped DTAB mixed micellar system showed the characteristic two-step reduction process for the viologen units at the interface as revealed by CV experiments. 1% mixing of DDEV with DTAB also allowed us to prepare stable w/o microemulsions containing viologen units at the interface which is otherwise unattainable with pure viologen surfactants. The charge-transfer capability of the viologen unit to the electron-rich 2,6-dihydroxynaphthalene (DHN) moiety inside the macrocyclic host, cucurbit[8]uril (CB[8]) is also evaluated for this system, and surprisingly even at this very low concentration, the ternary complex of DDEV-DHN@CB[8] transformed the micellar assembly to uniform vesicles. All of these properties have been further extended to other tetraalkylammonium surfactants, and similar effects were observed.

17.
Langmuir ; 29(46): 14274-83, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24128085

RESUMO

A lysine based peptide amphiphile (PA) is designed and synthesized for efficient water immobilization. The PA with a minimum gelation concentration (MGC) of 1% w/v in water shows prolonged stability and can also efficiently immobilize aqueous mixtures of some other organic solvents. The presence of a free amine induced pH dependency of the gelation as the PA could form hydrogel at a pH range of 1-8 but failed to do so above that pH. Various spectroscopic and microscopic experiments such as steady state fluorescence, NMR, IR, CD, and FESEM reveal the presence of hydrophobic interaction, hydrogen bond, and π-π stacking interaction in the self-assembly process. The self-aggregation has been correlated with the design of the molecule to show the involvement of supramolecular forces and the hierarchical pathway. While the L analogue formed left-handed helical nanofibers, the other enantiomer showed opposite helicity. Interestingly the equimolar mixture of the isomers failed to form any fibrous aggregate. Although fibers formed at a subgel concentration, no helical nature was observed at this stage. The length and thickness of the fibers increased with increase in the gelator concentration. The nanofibers formed by the gelator are used as a template to prepare mesoporous single wall silica nanotubes (SWSNTs) in situ in plain water without the requirement of any organic solvent as well as any external hydrolyzing agent. The SWSNTs formed are open at both ends, are few micrometers in length, and have an average diameter of ~10 nm. The BET isotherm showed a type IV hysteresis loop suggesting mesoporous nature of the nanotubes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Nanotubos/química , Peptídeos/química , Dióxido de Silício/química , Hidrogéis/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Lisina/química , Modelos Moleculares , Estrutura Secundária de Proteína
20.
EMBO J ; 27(18): 2444-56, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18756270

RESUMO

Post-translational isoprenylation of proteins is carried out by three related enzymes: farnesyltransferase, geranylgeranyl transferase-I, and Rab geranylgeranyl transferase (RabGGTase). Despite the fact that the last one is responsible for the largest number of individual protein prenylation events in the cell, no structural information is available on its interaction with substrates and products. Here, we present structural and biophysical analyses of RabGGTase in complex with phosphoisoprenoids as well as with the prenylated peptides that mimic the C terminus of Rab7 GTPase. The data demonstrate that, unlike other protein prenyl transferases, both RabGGTase and its substrate RabGTPases completely 'outsource' their specificity for each other to an accessory subunit, the Rab escort protein (REP). REP mediates the placement of the C terminus of RabGTPase into the active site of RabGGTase through a series protein-protein interactions of decreasing strength and selectivity. This arrangement enables RabGGTase to prenylate any cysteine-containing sequence. On the basis of our structural and thermodynamic data, we propose that RabGGTase has evolved from a GGTase-I-like molecule that 'learned' to interact with a recycling factor (GDI) that, in turn, eventually gave rise to REP.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/fisiologia , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Prenilação , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Ratos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA