Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Arterioscler Thromb Vasc Biol ; 41(8): 2293-2314, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34039018

RESUMO

OBJECTIVE: Remote ischemic preconditioning (RIPC) is an intervention process where the application of multiple cycles of short ischemia/reperfusion (I/R) in a remote vascular bed provides protection against I/R injury. However, the identity of the specific RIPC factor and the mechanism by which RIPC alleviates I/R injury remains unclear. Here, we have investigated the identity and the mechanism by which the RIPC factor provides protection. APPROACH AND RESULTS: Using fluorescent in situ hybridization and immunofluorescence, we found that RIPC induces Nrg1ß expression in the endothelial cells, which is secreted into the serum. Whereas, RIPC protected against myocardial apoptosis and infarction, treatment with neutralizing-Nrg1 antibodies abolished the protective effect of RIPC. Further, increased superoxide anion generated in RIPC is required for Nrg1 expression. Improved myocardial perfusion and nitric oxide production were achieved by RIPC as determined by contrast echocardiography and electron spin resonance. However, treatment with neutralizing-Nrg1ß antibody abrogated these effects, suggesting Nrg1ß is a RIPC factor. ErbB2 (Erb-B2 receptor tyrosine kinase 2) is not expressed in the adult murine cardiomyocytes, but expressed in the endothelial cells of heart which is degraded in I/R. RIPC-induced Nrg1ß interacts with endothelial ErbB2 and thereby prevents its degradation. Mitochondrial Trx2 (thioredoxin) is degraded in I/R, but rescue of ErbB2 by Nrg1ß prevents Trx-2 degradation that decreased myocardial apoptosis in I/R. CONCLUSIONS: Nrg1ß is a RIPC factor that interacts with endothelial ErbB2 and prevents its degradation, which in turn prevents Trx2 degradation due to phosphorylation and inactivation of ATG5 (autophagy-related 5) by ErbB2. Nrg1ß also restored loss of eNOS (endothelial nitric oxide synthase) function in I/R via its interaction with Src.


Assuntos
Autofagia , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Neuregulina-1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptor ErbB-2/metabolismo , Tiorredoxinas/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Neuregulina-1/antagonistas & inibidores , Fosforilação , Estabilidade Proteica , Proteólise , Receptor ErbB-2/genética , Transdução de Sinais , Quinases da Família src/metabolismo
3.
Cardiovasc Toxicol ; 21(2): 142-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32880787

RESUMO

Cardiotoxicity is a major limitation for anthracycline chemotherapy although anthracyclines are potent antitumor agents. The precise mechanism underlying clinical heart failure due to anthracycline treatment is not fully understood, but is believed to be due, in part, to lipid peroxidation and the generation of free radicals by anthracycline-iron complexes. Thioredoxin (Trx) is a small redox-active antioxidant protein with potent disulfide reductase properties. Here, we present evidence that cancer cells overexpressing Trx undergo enhanced apoptosis in response to daunomycin. In contrast, cells overexpressing redox-inactive mutant Trx were not effectively killed. However, rat embryonic cardiomyocytes (H9c2 cells) overexpressing Trx were protected against daunomycin-mediated apoptosis, but H9c2 cells with decreased levels of active Trx showed enhanced apoptosis in response to daunomycin. We further demonstrate that increased level of Trx is specifically effective in anthracycline toxicity, but not with other topoisomerase II inhibitors such as etoposide. Collectively these data demonstrate that whereas high levels of Trx protect cardiomyocytes against anthracycline toxicity, it potentiates toxicity of anthracyclines in cancer cells.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Daunorrubicina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Tiorredoxinas/metabolismo , Animais , Cardiotoxicidade , Células HCT116 , Humanos , Células MCF-7 , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Tiorredoxinas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células U937
4.
Sci Transl Med ; 9(376)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179506

RESUMO

The incidence of high blood pressure with advancing age is notably high, and it is an independent prognostic factor for the onset or progression of a variety of cardiovascular disorders. Although age-related hypertension is an established phenomenon, current treatments are only palliative but not curative. Thus, there is a critical need for a curative therapy against age-related hypertension, which could greatly decrease the incidence of cardiovascular disorders. We show that overexpression of human thioredoxin (TRX), a redox protein, in mice prevents age-related hypertension. Further, injection of recombinant human TRX (rhTRX) for three consecutive days reversed hypertension in aged wild-type mice, and this effect lasted for at least 20 days. Arteries of wild-type mice injected with rhTRX or mice with TRX overexpression exhibited decreased arterial stiffness, greater endothelium-dependent relaxation, increased nitric oxide production, and decreased superoxide anion (O2•-) generation compared to either saline-injected aged wild-type mice or mice with TRX deficiency. Our study demonstrates a potential translational role of rhTRX in reversing age-related hypertension with long-lasting efficacy.


Assuntos
Envelhecimento/patologia , Vasos Sanguíneos/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Tiorredoxinas/uso terapêutico , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Glutationa/metabolismo , Humanos , Hipertensão/fisiopatologia , Artéria Mesentérica Superior/efeitos dos fármacos , Artéria Mesentérica Superior/patologia , Artéria Mesentérica Superior/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Oxirredução , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Superóxidos/metabolismo , Tiorredoxinas/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
5.
J Biol Chem ; 291(45): 23374-23389, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27587398

RESUMO

Reversible glutathionylation plays a critical role in protecting protein function under conditions of oxidative stress generally and for endothelial nitric-oxide synthase (eNOS) specifically. Glutathione-dependent glutaredoxin-mediated deglutathionylation of eNOS has been shown to confer protection in a model of heart damage termed ischemia-reperfusion injury, motivating further study of eNOS deglutathionylation in general. In this report, we present evidence for an alternative mechanism of deglutathionylation. In this pathway thioredoxin (Trx), a small cellular redox protein, is shown to rescue eNOS from glutathionylation during ischemia-reperfusion in a GSH-independent manner. By comparing mice with global overexpression of Trx and mice with cardiomyocyte-specific overexpression of Trx, we demonstrate that vascular Trx-mediated deglutathionylation of eNOS protects against ischemia-reperfusion-mediated myocardial infarction. Trx deficiency in endothelial cells promoted eNOS glutathionylation and reduced its enzymatic activity, whereas increased levels of Trx led to deglutathionylated eNOS. Thioredoxin-mediated deglutathionylation of eNOS in the coronary artery in vivo protected against reperfusion injury, even in the presence of normal levels of GSH. We further show that Trx directly interacts with eNOS, and we confirmed that Cys-691 and Cys-910 are the glutathionylated sites, as mutation of these cysteines partially rescued the decrease in eNOS activity, whereas mutation of a distal site, Cys-384, did not. Collectively, this study shows for the first time that Trx is a potent deglutathionylating protein in vivo and in vitro that can deglutathionylate proteins in the presence of high levels of GSSG in conditions of oxidative stress.


Assuntos
Glutationa/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Tiorredoxinas/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Tiorredoxinas/genética , Regulação para Cima
6.
J Biol Chem ; 290(28): 17505-19, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26028649

RESUMO

The mitogen-activated protein kinase kinase 4 (MKK4) is activated via phosphorylation of Ser-257 and Thr-261 by upstream MAP3Ks and activates JNK and p38 MAPKs in response to cellular stress. We show that thioredoxin (Trx), a cellular redox protein, activates MKK4 via Cys-246 and Cys-266 residues as mutation of these residues renders MKK4 insensitive to phosphorylation by MAP3Ks, TNFα, or Trx. MKK4 is activated in vitro by reduced Trx but not oxidized Trx in the absence of an upstream kinase, suggesting that autophosphorylation of this protein occurs due to reduction of Cys-246 and Cys-266 by Trx. Additionally, mutation of Cys-246 and Cys-266 resulted in loss of kinase activity suggesting that the redox state of Cys-246 and Cys-266 is a critical determinant of MKK4 activation. Trx induces manganese superoxide dismutase (MnSOD) gene transcription by activating MKK4 via redox control of Cys-246 and Cys-266, as mutation of these residues abrogates MKK4 activation and MnSOD expression. We further show that MKK4 activates NFκB for its binding to the MnSOD promoter, which leads to AP-1 dissociation followed by MnSOD transcription. Taken together, our studies show that the redox status of Cys-246 and Cys-266 in MKK4 controls its activities independent of MAP3K, demonstrating integration of the endothelial redox environment to MAPK signaling.


Assuntos
Células Endoteliais/metabolismo , MAP Quinase Quinase 4/metabolismo , NF-kappa B/metabolismo , Superóxido Dismutase/genética , Tiorredoxinas/metabolismo , Substituição de Aminoácidos , Células Cultivadas , Cisteína/química , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , MAP Quinase Quinase 4/química , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Mutagênese Sítio-Dirigida , Oxirredução , Fosforilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 308(5): L429-42, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539854

RESUMO

Pulmonary oxygen toxicity is a major clinical problem for patients undergoing supplemental oxygen therapy. Thioredoxin (Trx) is an endogenous antioxidant protein that regenerates oxidatively inactivated proteins. We examined how Trx contributes to oxygen tolerance by creating transgenic mice with decreased levels of functional thioredoxin (dnTrx-Tg) using a dominant-negative approach. These mice showed decreased Trx activity in the lung although the expression of mutant protein is three times higher than the wild-type mice. Additionally, we found that these mice showed increased oxidation of endogenous Trx in room air. When exposed to hyperoxia (>90% O2) for 4 days, they failed to recover and showed significant mortality. Even in normal oxygen levels, these mice displayed a significant decrease in aconitase and NADH dehydrogenase activities, decreased mitochondrial energy metabolism, increased p53 and Gadd45α expression, and increased synthesis of proinflammatory cytokines. These effects were further increased by hyperoxia. We also generated mice overexpressing Trx (Trx-Tg) and found they maintained lung redox balance during exposure to high oxygen and thus were resistant to hyperoxia-induced lung injury. These mice had increased levels of reduced Trx in the lung in normoxia as well as hyperoxia. Furthermore, the levels of aconitase and NADH dehydrogenase activities were maintained in these mice concomitant with maintenance of mitochondrial energy metabolism. The genotoxic stress markers such as p53 or Gadd45α remained in significantly lower levels in hyperoxia compared with dnTrx-Tg or wild-type mice. These studies establish that mice deficient in functional Trx exhibit a phenotype of sensitivity to ambient air and hypersensitivity to hyperoxia.


Assuntos
Ar , Hiperóxia/complicações , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Tiorredoxinas/metabolismo , Aconitato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Respiração Celular , Galinhas , Citocinas/metabolismo , Humanos , Hiperóxia/patologia , Mediadores da Inflamação/metabolismo , Pulmão/enzimologia , Pulmão/patologia , Lesão Pulmonar/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Proteínas Nucleares/metabolismo , Oxirredução , Oxigênio , Consumo de Oxigênio , Fenótipo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Análise de Sobrevida , Proteína Supressora de Tumor p53/metabolismo
8.
Mol Cell Biochem ; 395(1-2): 187-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24939362

RESUMO

Breathing high concentrations of oxygen (hyperoxia) causes lung injury and is associated with lung diseases such as bronchopulmonary dysplasia (BPD), respiratory distress syndrome and persistent pulmonary hypertension of the newborns. Hyperoxia (95-100 %O2) causes DNA damage and growth arrest of lung cells and consequently cells die by apoptosis or necrosis. Although supplemental oxygen therapy is clinically important, the level and duration of hyperoxic exposure that would allow lung cells to reenter the cell cycle remains unclear. We hypothesized that cells exposed to lower concentrations of hyperoxia will retain the capacity to enter cell cycle when recovered in room air. We employed varying concentrations of oxygen (21-95 %) to determine the response of lung cells to hyperoxia. Our results indicate that cells were growth arrested and failed to reenter the cell cycle when exposed to greater than 60 % oxygen. Cell cycle checkpoint proteins were increased in a biphasic manner, increasing until 70 % oxygen, but declined in greater than 90 % oxygen. Microarray analysis shows that there is significant decrease in the abundance of Cdks 6-8 and retinoblastoma protein (Rb), p107 and p130 in exposure to 90 % oxygen for 48 h. We further tested the effect of clinically relevant as needed oxygen [(pro-re-nata (prn)] in premature infant (125-days and 140-days) baboon model of BPD. The microarray results show that 6 or 14d PRN oxygen-exposed animals had induced expression of chromosomal maintenance genes (MCMs), genes related to anti-inflammation, proliferation, and differentiation.


Assuntos
Displasia Broncopulmonar/etiologia , Proteínas de Ciclo Celular/genética , Hiperóxia/genética , Pulmão/patologia , Animais , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Mamíferos/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Papio
9.
PLoS One ; 8(9): e73358, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023862

RESUMO

High levels of oxygen (hyperoxia) are frequently used in critical care units and in conditions of respiratory insufficiencies in adults, as well as in infants. However, hyperoxia has been implicated in a number of pulmonary disorders including bronchopulmonary dysplasia (BPD) and adult respiratory distress syndrome (ARDS). Hyperoxia increases the generation of reactive oxygen species (ROS) in the mitochondria that could impair the function of the mitochondrial electron transport chain. We analyzed lung mitochondrial function in hyperoxia using the XF24 analyzer (extracellular flux) and optimized the assay for lung epithelial cells and mitochondria isolated from lungs of mice. Our data show that hyperoxia decreases basal oxygen consumption rate (OCR), spare respiratory capacity, maximal respiration and ATP turnover in MLE-12 cells. There was significant decrease in glycolytic capacity and glycolytic reserve in MLE-12 cells exposed to hyperoxia. Using mitochondria isolated from lungs of mice exposed to hyperoxia or normoxia we have shown that hyperoxia decreased the basal, state 3 and state3 µ (respiration in an uncoupled state) respirations. Further, using substrate or inhibitor of a specific complex we show that the OCR via complex I and II, but not complex IV was decreased, demonstrating that complexes I and II are specific targets of hyperoxia. Further, the activities of complex I (NADH dehydrogenase, NADH-DH) and complex II (succinate dehydrogenase, SDH) were decreased in hyperoxia, but the activity of complex IV (cytochrome oxidase, COX) remains unchanged. Taken together, our study show that hyperoxia impairs glycolytic and mitochondrial energy metabolism in in tact cells, as well as in lungs of mice by selectively inactivating components of electron transport system.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Glicólise , Pulmão/citologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Animais , Linhagem Celular , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Espaço Extracelular/metabolismo , Feminino , Masculino , Camundongos
10.
Mol Cell Biochem ; 337(1-2): 53-63, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19859790

RESUMO

Thioredoxin (Trx) is a small ubiquitous protein, which has been shown to be involved in redox-dependent cellular functions. In this article, we demonstrate that the increased level of Trx induces AP-1 DNA binding in a redox-dependent manner by activating JNK subgroup of MAPKs. The majority of AP-1 DNA binding complex was found to be composed of cJun, JunB, and Fra-1. Increased expression of Trx resulted in phosphorylation of cJun, Jun B, and Fra-1. Further, increased expression of Trx induced the phosphorylation of MKK4 and MKK7 which are upstream kinases of the JNK signaling cascade. In co-transfection studies, AP-1-dependent luciferase reporter vector and pcDNA3-Trx increased luciferase activity demonstrating that increased expression of Trx increases AP-1 transactivation. In addition, dominant-negative JNK kinase (dnJNK/MKK4) or dominant-negative JNK (dnJNK) inhibited Trx-mediated AP-1 transactivation, as well as AP-1 DNA binding. Furthermore, transfection of kinase-dead MEKK1, an initiating kinase of the JNK pathway inhibited Trx-mediated AP-1 transactivation and DNA binding, suggesting that MEKK1 may mediate Trx-induced AP-1 activation. In contrast, wild-type MEKK1 overexpression did not inhibit Trx-mediated AP-1 activation. Taken together, our data demonstrate that increased expression of Trx induces MKK4/MKK7-dependent JNK activation, resulting in enhanced DNA binding, and transactivation of AP-1 transcription factor.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Tiorredoxinas/farmacologia , Fator de Transcrição AP-1/agonistas , DNA/metabolismo , Genes Reporter/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Luciferases/genética , Luciferases/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ligação Proteica/efeitos dos fármacos , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transfecção , Células Tumorais Cultivadas
11.
J Biol Chem ; 284(25): 17069-17081, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19369702

RESUMO

We have investigated the role of cellular redox state on the regulation of cell cycle in hypoxia and shown that whereas cells expressing mutant thioredoxin (Trx) or a normal level of Trx undergo increased apoptosis, cells overexpressing Trx are protected against apoptosis. We show that hypoxia activates p53 and Chk1/Chk2 proteins in cells expressing normal or mutant Trx but not in cells overexpressing Trx. We also show that the activity of ribonucleotide reductase decreases in hypoxia in cells expressing redox-inactive Trx. Although hypoxia has been shown to induce reactive oxygen species (ROS) generation in the mitochondria resulting in enhanced p53 expression, our data demonstrate that hypoxia-induced p53 expression and phosphorylation are independent of ROS. Furthermore, hypoxia induces oxidation of Trx, and this oxidation is potentiated in the presence of 6-aminonicotinamide, an inhibitor of glucose-6-phosphate dehydrogenase. Taken together our study shows that Trx redox state is modulated in hypoxia independent of ROS and is a critical determinant of cell cycle regulation.


Assuntos
Ciclo Celular/fisiologia , Hipóxia Celular/fisiologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Tiorredoxinas/metabolismo , 6-Aminonicotinamida/farmacologia , Apoptose , Sequência de Bases , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Expressão Gênica , Glucosefosfato Desidrogenase/antagonistas & inibidores , Humanos , Mutação , Oxirredução , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 294(5): L998-L1006, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18344416

RESUMO

Elevated level of oxygen (hyperoxia) is widely used in critical care units and in respiratory insufficiencies. In addition, hyperoxia has been implicated in many diseases such as bronchopulmonary dysplasia or acute respiratory distress syndrome. Although hyperoxia is known to cause DNA base modifications and strand breaks, the DNA damage response has not been adequately investigated. We have investigated the effect of hyperoxia on DNA damage signaling and show that hyperoxia is a unique stress that activates the ataxia telangiectasia mutant (ATM)- and Rad3-related protein kinase (ATR)-dependent p53 phosphorylations (Ser6, -15, -37, and -392), phosphorylation of histone H2AX (Ser139), and phosphorylation of checkpoint kinase 1 (Chk1). In addition, we show that phosphorylation of p53 (Ser6) and histone H2AX (Ser139) depend on both ATM and ATR. We demonstrate that ATR activation precedes ATM activation in hyperoxia. Finally, we show that ATR is required for ATM activation in hyperoxia. Taken together, we report that ATR is the major DNA damage signal transducer in hyperoxia that activates ATM.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Hiperóxia/fisiopatologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma , Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Reparo do DNA , Proteínas de Ligação a DNA/genética , Histonas/genética , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Neoplasias Pulmonares , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Serina/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
13.
Cell Signal ; 20(4): 675-83, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18222647

RESUMO

Mitogen-activated protein kinases (MAPKs) are key signaling molecules that respond to mitogenic stimulation or environmental stress, resulting in the expression of target proteins. c-Jun N-terminal kinase (JNK) and p38 MAPKs are activated by inflammatory cytokines or environmental stress. Specific p38 MAPK inhibitors, such as SB202190 or SB203580, are widely used to dissect p38 MAPK-related signal transduction mechanisms. While using SB202190 to inhibit p38 MAPK-related signaling, we observed that SB202190 treatment could activate JNK. Further experiments showed that treatment of cells with SB202190 could phosphorylate JNK and activating transcription factor 2 (ATF-2), and increased AP-1 DNA binding. Using multiple cell lines and primary endothelial cells, we demonstrated that specific p38 MAPK inhibitors SB202190 or SB203580 induces the activation of the JNK pathway. Further, using with RNA interference and kinase-inactive expression of intermediates of the JNK pathway, we demonstrated SB202190- or SB203580-induced JNK activation is dependent on the MLK-3-MKK4/MKK7-dependent signal transduction pathway. Finally, we demonstrate that treatment of cells with SB202190 or SB203580 induces the phosphorylation and activation of MLK3.


Assuntos
Ativadores de Enzimas/farmacologia , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 7/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Fator 2 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática , Humanos , MAP Quinase Quinase 7/genética , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição AP-1/metabolismo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
14.
Mol Cell Biochem ; 308(1-2): 193-200, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17932622

RESUMO

Mammalian ultraviolet (UV) radiation response is a gene induction cascade activated by several transcription factors, including NF-kappaB. Although NF-kappaB is induced by UV radiation, the signal transduction mechanism remains relatively unclear. In the present study, we show that UV-induced NF-kappaB activation is mediated by the activation of Ataxia telangiecia mutated (ATM) and protein kinase C (PKC). We also show that caffeine specifically inhibits UV-mediated NF-kappaB activation, but not TNFalpha-mediated NF-kappaB activation. In addition, our study shows that ATM, but not ATM-Rad3-related (ATR) or DNA-dependent protein kinase (DNA-PK) is involved in UV-induced NF-kappaB activation. Because SB203580 (a p38 MAPK inhibitor), or Calphostin C or rottlerin (PKC inhibitors) was able to inhibit UV-mediated NF-kappaB activation, we evaluated whether caffeine could inhibit p38 MAPK or PKC activity. Caffeine or rottlerin inhibited UV-induced phosphorylation of p38 MAPK, but not anisomycin-induced phosphorylation of p38 MAPK, suggesting that p38 MAPK is downstream of PKC. Additionally, caffeine could effectively inhibit UV-induced increases in PKC activity. Taken together, our study demonstrates that caffeine is a potent inhibitor of UV-induced NF-kappaB activation. Additionally, this inhibition occurs due to the inhibitory action of caffeine on ATM and PKC, resulting in the inhibition of p38 MAPK activation.


Assuntos
Cafeína/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Melanoma/enzimologia , NF-kappa B/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Humanos , Proteínas I-kappa B/metabolismo , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos da radiação , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
15.
J Biol Chem ; 280(48): 40084-96, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16159878

RESUMO

Apoptosis is a major mechanism of cancer cell destruction by chemotherapy and radiotherapy. The anthracycline class of antitumor drugs undergoes redox cycling in living cells producing increased amounts of reactive oxygen species and semiquinone radical, both of which can cause DNA damage, and consequently trigger apoptotic death of cancer cells. We show here that MCF-7 cells overexpressing thioredoxin (Trx) were more apoptotic in response to daunomycin. Trx overexpression in MCF-7 cells increased the generation of superoxide anion (O2*-) in anthracycline-treated cell extracts. Enhanced generation of O2- in response to daunomycin inTrx-overexpressing MCF-7 cells was inhibited by diphenyleneiodonium chloride, a general NADPH reductase inhibitor, demonstrating that Trx provides reducing equivalents to a bioreductive enzyme for redox cycling of daunomycin. Additionally Trx increased p53-DNA binding and expression in response to anthracyclines. MCF-7 cells expressing mutant redox-inactive Trx showed decreased superoxide generation, apoptosis, and p53 protein and DNA binding. In addition, down-regulation of endogenous Trx expression by small interfering RNA resulted in decreased expression of caspase-7 and cleaved poly(ADP-ribose) polymerase expression in response to daunomycin. These results suggest that endogenous Trx is required for anthracycline-mediated apoptosis of breast cancer cells. Taken together, our data demonstrate a novel pro-oxidant and proapoptotic role of Trx in anthracycline-mediated apoptosis in anthracycline chemotherapy.


Assuntos
Antraciclinas/farmacologia , Tiorredoxinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ânions , Apoptose , Western Blotting , Linhagem Celular Tumoral , Citosol/metabolismo , DNA/química , Daunorrubicina/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Corantes Fluorescentes/farmacologia , Radicais Livres , Inativação Gênica , Genes p53 , Humanos , Marcação In Situ das Extremidades Cortadas , Oniocompostos/farmacologia , Oxidantes/química , Oxirredução , Oxigênio/química , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Interferência de RNA , Espécies Reativas de Oxigênio , Superóxidos/química , Tiorredoxinas/química , Fatores de Tempo , Transfecção , Tripsina/farmacologia
16.
Cancer Chemother Pharmacol ; 54(5): 449-58, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15290096

RESUMO

Anthracyclines such as doxorubicin and daunomycin undergo bioreductive activation by redox-cycling, and this is associated with generation of reactive oxygen species. Toxicity of anthracyclines is attributed to DNA intercalation by an anthracycline semiquinone radical that is generated via redox-cycling. Flavoprotein enzymes catalyze the bioreductive activation of anthracyclines. Thioredoxin reductase (TR), which is also a flavoprotein enzyme, participates in bioreductive activation of anthracyclines. In the present study we showed that addition of E. coli thioredoxin (Trx) enhances the rate of superoxide production by E. coli TR in the presence of anthracyclines. The superoxide generated in this redox-cycling process induced DNA damage as determined by an in vitro plasmid DNA damage assay. In addition, Trx-SH enhanced the activity of cyto-chrome P450 reductase and the redox-cycling of anthracyclines independently of NADPH. Furthermore,when A549 cells were incubated with E. coli Trx followed by doxorubicin treatment, increased levels of ROS generation were observed. Taken together, these results show a novel property of the Trx system in bioreductive activation of anthracyclines.


Assuntos
Antraciclinas/farmacocinética , Antraciclinas/toxicidade , Dano ao DNA , Escherichia coli/metabolismo , Superóxidos/metabolismo , Tiorredoxinas/metabolismo , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos c/metabolismo , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
17.
Antioxid Redox Signal ; 6(1): 109-16, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14713342

RESUMO

Bronchopulmonary dysplasia (BPD) is a major complication of premature infants who receive prolonged ventilatory support. The pathophysiology of BPD involves oxidant injury, baro/volutrauma, and disordered lung repair. Exposure of premature lung that is poorly adapted for air breathing (>3% oxygen in fetal lung) to a higher concentration of oxygen can cause significant oxidant injury. Cell growth and differentiation of the developing lung require selective and ordered cell division. As hyperoxia can increase the expression of cell-cycle checkpoints that can cause growth arrest of lung cells, in this report we examined the expression of checkpoint proteins p53 and p21 in a premature infant the baboon model of BPD. Additionally, we also determined whether enhanced apoptosis occurs in baboon BPD model. We have shown that p53 and p21 expression are increased in 125-day as well as 140-day premature baboons with BPD. We also demonstrate increased apoptosis in lung tissue of premature baboons with BPD. These results demonstrate that cell growth inhibition is a likely factor in the evolution of BPD. Additionally, lung cells may undergo increased apoptosis that can impair the repair process in the postventilatory recovery period.


Assuntos
Apoptose/fisiologia , Ciclinas/metabolismo , Pneumopatias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Animais Recém-Nascidos , Inibidor de Quinase Dependente de Ciclina p21 , Modelos Animais de Doenças , Idade Gestacional , Imuno-Histoquímica , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/patologia , Papio
18.
Antioxid Redox Signal ; 6(1): 117-27, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14713343

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease of premature infants, which results in substantial morbidity. The pathophysiology of BPD includes oxidant injury, baro/volutrauma, and disordered lung repair. As lung development, differentiation, and repair require cell division, we hypothesized dysregulation of the cell cycle in oxygen exposure of premature infants that may contribute to the evolution of BPD. In this investigation, we studied the expression of cyclins and cyclin-dependent kinases (cdks) that regulate transition from G1 and G2 phases of the cell cycle. We report here that expression of cyclin D1, cyclin E, and cyclin A is modulated in premature baboons in respiratory distress. In addition, the expression of cdk1 or cdk4 was also modulated in these premature animals. The phosphorylation of retinoblastoma protein was progressively decreased in 125-day animals and in 140-day animals exposed to 6 or 14 days of PRN oxygen. These results indicate that due to altered cyclin and cdk expression, the repair of injured epithelium may proceed in a disordered manner that is characteristic of BPD. Thus, altered cell cycle regulation may be an important factor in the evolution of BPD.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Pneumopatias/metabolismo , Pneumopatias/patologia , Pulmão/metabolismo , Pulmão/patologia , Proteínas Proto-Oncogênicas , Animais , Animais Recém-Nascidos , Proteína Quinase CDC2/metabolismo , Quinase 4 Dependente de Ciclina , Modelos Animais de Doenças , Idade Gestacional , Imuno-Histoquímica , Papio , Fosforilação , Proteína do Retinoblastoma/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 286(1): L87-97, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12959929

RESUMO

Hyperoxia has been shown to cause DNA damage resulting in growth arrest of cells in p53-dependent, as well as p53-independent, pathways. Although H2O2 and other peroxides have been shown to induce ataxia telangiectasia-mutated (ATM)-dependent p53 phosphorylation in response to DNA damage, the signal transduction mechanisms in response to hyperoxia are currently unknown. Here we demonstrate that hyperoxia phosphorylates the Ser15 residue of p53 independently of ATM. Hyperoxia phosphorylated p53 (Ser15) in DNA-dependent protein kinase null (DNA-PK-/-) cells, indicating that it may not depend on DNA-PK for phosphorylation of p53 (Ser15). We show that Ser37 and Ser392 residues of p53 are also phosphorylated in an ATM-independent manner in hyperoxia. In contrast, H2O2 did not phosphorylate Ser37 in either ATM+/+ or ATM-/- cells. Furthermore, H2O2 failed to phosphorylate Ser15 in ATM-/- cells. Additionally, overexpression of kinase-inactive ATM-and-Rad3-related (ATR) in HEK293T cells diminished Ser15, Ser37, and Ser392 phosphorylation compared with vector-only transfected cells. In contrast, wild-type ATR overexpression did not diminish Ser15, Ser37, or Ser392 phosphorylation. We also show that checkpoint kinase 1 (Chk1) is phosphorylated on Ser345 in response to hyperoxia, which could be inhibited by caffeine or wortmannin, potent inhibitors of phosphoinositide 3-kinase-related kinases. Hyperoxia also phosphorylated Chk1 in ATM+/+ as well as in ATM-/- cells, demonstrating an ATM-independent mechanism in Chk1 phosphorylation. Together, our data suggest that hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites in an ATM-independent manner, which is different from other forms of oxidative stress such as H2O2 or UV light.


Assuntos
Adenocarcinoma , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA , Hiperóxia/metabolismo , Neoplasias Pulmonares , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Androstadienos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Proteína Quinase Ativada por DNA , Humanos , Peróxido de Hidrogênio/farmacologia , Rim/citologia , Proteínas Nucleares , Análise de Sequência com Séries de Oligonucleotídeos , Oxidantes/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA