Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 141(21): 2629-2641, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36867840

RESUMO

The communication of talin-activated integrin αIIbß3 with the cytoskeleton (integrin outside-in signaling) is essential for platelet aggregation, wound healing, and hemostasis. Filamin, a large actin crosslinker and integrin binding partner critical for cell spreading and migration, is implicated as a key regulator of integrin outside-in signaling. However, the current dogma is that filamin, which stabilizes inactive αIIbß3, is displaced from αIIbß3 by talin to promote the integrin activation (inside-out signaling), and how filamin further functions remains unresolved. Here, we show that while associating with the inactive αIIbß3, filamin also associates with the talin-bound active αIIbß3 to mediate platelet spreading. Fluorescence resonance energy transfer-based analysis reveals that while associating with both αIIb and ß3 cytoplasmic tails (CTs) to maintain the inactive αIIbß3, filamin is spatiotemporally rearranged to associate with αIIb CT alone on activated αIIbß3. Consistently, confocal cell imaging indicates that integrin α CT-linked filamin gradually delocalizes from the ß CT-linked focal adhesion marker-vinculin likely because of the separation of integrin α/ß CTs occurring during integrin activation. High-resolution crystal and nuclear magnetic resonance structure determinations unravel that the activated integrin αIIb CT binds to filamin via a striking α-helix→ß-strand transition with a strengthened affinity that is dependent on the integrin-activating membrane environment containing enriched phosphatidylinositol 4,5-bisphosphate. These data suggest a novel integrin αIIb CT-filamin-actin linkage that promotes integrin outside-in signaling. Consistently, disruption of such linkage impairs the activation state of αIIbß3, phosphorylation of focal adhesion kinase/proto-oncogene tyrosine kinase Src, and cell migration. Together, our findings advance the fundamental understanding of integrin outside-in signaling with broad implications in blood physiology and pathology.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Glicoproteína IIb da Membrana de Plaquetas , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Actinas/metabolismo , Filaminas/metabolismo , Talina/metabolismo , Plaquetas/metabolismo
2.
Sci Rep ; 12(1): 16441, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180554

RESUMO

Breast cancer is the commonest malignancy of women and with its incidence on the rise, the need to identify new targets for treatment is imperative. There is a growing interest in the role of lipid metabolism in cancer. Carnitine palmitoyl-transferase-1 (CPT-1); the rate limiting step in fatty acid oxidation, has been shown to be overexpressed in a range of tumours. There are three isoforms of CPT-1; A, B and C. It is CPT-1A that has been shown to be the predominant isoform which is overexpressed in breast cancer. We performed a bioinformatic analysis using readily available online platforms to establish the prognostic and predictive effects related to CPT-1A expression. These include the KM plotter, the Human Protein Atlas, the cBioPortal, the G2O, the MethSurvand the ROC plotter. A Network analysis was performed using the Oncomine platform and signalling pathways constituting the cancer hallmarks, including immune regulation as utilised by NanoString. The epigenetic pathways were obtained from the EpiFactor website. Spearman correlations (r) to determine the relationship between CPT-1A and the immune response were obtained using the TISIDB portal. Overexpression of CPT-1A largely confers a worse prognosis and CPT-1A progressively recruits a range of pathways as breast cancer progresses. CPT-1A's interactions with cancer pathways is far wider than previously realised and includes associations with epigenetic regulation and immune evasion pathways, as well as wild-type moderate to high penetrant genes involved in hereditary breast cancer. Although CPT-1A genomic alterations are detected in 9% of breast carcinomas, both the alteration and the metagene associated with it, confers a poor prognosis. CPT-1A expression can be utilised as a biomarker of disease progression and as a potential therapeutic target.


Assuntos
Neoplasias da Mama , Carnitina O-Palmitoiltransferase/análise , Biomarcadores , Neoplasias da Mama/patologia , Carnitina , Carnitina O-Palmitoiltransferase/metabolismo , Biologia Computacional , Epigênese Genética , Ácidos Graxos/metabolismo , Feminino , Humanos , Isoformas de Proteínas/metabolismo
3.
J Thromb Haemost ; 19(4): 941-953, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33492784

RESUMO

OBJECTIVE: Plasminogen/plasmin is a serine protease system primarily responsible for degrading fibrin within blood clots. Plasminogen mediates its functions by interacting with plasminogen receptors on the cell surface. H2B, one such plasminogen receptor, is found on the surface of several cell types including macrophages. Both basic and clinical studies support the role of plasminogen in the process of foam cell formation (FCF), a hallmark of atherosclerosis. Growing evidence also implicates serine protease-activated receptors (PARs) in atherosclerosis. These receptors are also found on macrophages, and plasmin is capable of activating PAR1 and PAR4. The goal of this study was to determine the extent of H2B's contribution to plasminogen-mediated FCF by macrophages and if PARs are involved in this process. APPROACH AND RESULTS: Treating macrophages with plasminogen increases their oxidized low-density lipoprotein uptake and plasminogen-mediated foam cell formation (Plg-FCF) significantly. The magnitude of Plg-FCF correlates with cell-surface expression of the H2B level. H2B blockade or downregulation reduces Plg-FCF, whereas its overexpression or high endogenous levels increases Plg-FCF. Modulating PAR1 level in mouse macrophages affects Plg-FCF. Activation/overexpression of PAR1 increases and its blockade/knockdown reduces this response. Confocal imaging indicates that both H2B and PAR1 colocalize with clathrin coated pits on the surface of macrophages, and reducing expression of clathrin or interfering with the clathrin-coated pits integrity reduces Plg-FCF. CONCLUSION: Our data indicate that the magnitude of Plg-FCF by macrophages is proportional to the H2B levels and demonstrate for the first time that PAR1 is involved in this process and that the integrity of clathrin-coated pits is required for the full effect of Plg-induced FCF.


Assuntos
Células Espumosas , Plasminogênio , Animais , Clatrina/metabolismo , Fibrinolisina/metabolismo , Células Espumosas/metabolismo , Histonas , Macrófagos/metabolismo , Camundongos , Plasminogênio/metabolismo , Receptor PAR-1
4.
J Immunol ; 198(12): 4855-4867, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500072

RESUMO

Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin αDß2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d-/-/ApoE-/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d-/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d-/- monocytes into ApoE-/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d-/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b-/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development.


Assuntos
Aterosclerose/imunologia , Vasos Sanguíneos/patologia , Antígenos CD11/genética , Antígenos CD18/genética , Cadeias alfa de Integrinas/genética , Macrófagos/imunologia , Animais , Aorta/imunologia , Aorta/patologia , Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/patologia , Vasos Sanguíneos/imunologia , Antígenos CD11/imunologia , Antígenos CD18/imunologia , Dieta Ocidental , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Cadeias alfa de Integrinas/deficiência , Cadeias alfa de Integrinas/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Peritonite/imunologia , Peritonite/patologia , Ativação Transcricional , Regulação para Cima
5.
Artigo em Inglês | MEDLINE | ID: mdl-27500205

RESUMO

Kindlins are 4.1-ezrin-ridixin-moesin (FERM) domain containing proteins. There are three kindlins in mammals, which share high sequence identity. Kindlin-1 is expressed primarily in epithelial cells, kindlin-2 is widely distributed and is particularly abundant in adherent cells, and kindlin-3 is expressed primarily in hematopoietic cells. These distributions are not exclusive; some cells express multiple kindlins, and transformed cells often exhibit aberrant expression, both in the isoforms and the levels of kindlins. Great interest in the kindlins has emerged from the recognition that they play major roles in controlling integrin function. In vitro studies, in vivo studies of mice deficient in kindlins, and studies of patients with genetic deficiencies of kindlins have clearly established that they regulate the capacity of integrins to mediate their functions. Kindlins are adaptor proteins; their function emanate from their interaction with binding partners, including the cytoplasmic tails of integrins and components of the actin cytoskeleton. The purpose of this review is to provide a brief overview of kindlin structure and function, a consideration of their binding partners, and then to focus on the relationship of each kindlin family member with cancer. In view of many correlations of kindlin expression levels and neoplasia and the known association of integrins with tumor progression and metastasis, we consider whether regulation of kindlins or their function would be attractive targets for treatment of cancer.

6.
Tumour Biol ; 36(12): 9987-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188903

RESUMO

Minichoromosome maintenance (MCM) proteins play key role in cell cycle progression by licensing DNA replication only once per cell cycle. These proteins are found to be overexpressed in cervical cancer cells. In this study, we depleted MCM4, one of the MCM 2-7 complex components by RNA interference (RNAi) in four cervical cancer cell lines. The four cell lines were selected on the basis of their human papillomavirus (HPV) infection: HPV16-positive SiHa, HPV18-positive ME-180, HPV16- and HPV18-positive CaSki, and HPV-negative C-33A. The MCM4-deficient cells irrespective of their HPV status grow for several generations and maintain regular cell cycle. We did not find any evidence of augmented response to a short-term (48 h) cisplatin treatment in these MCM4-deficient cells. However, MCM4-/HPV16+ SiHa cells cannot withstand a prolonged treatment (up to 5 days) of even a sublethal dosage of cisplatin. They show increased chromosomal instability compared to their control counterparts. On the other hand, MCM4-deficient CaSki cells (both HPV16+ and 18+) remain resistant to a prolonged exposure to cisplatin. Our study indicates that cervical cancer cells may be using excess MCMs as a backup for replicative stress; however, its regulatory mechanism is dependent on the HPV status of the cells.


Assuntos
Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Neoplasias do Colo do Útero/genética , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Feminino , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/efeitos dos fármacos , Papillomavirus Humano 18/patogenicidade , Humanos , Componente 4 do Complexo de Manutenção de Minicromossomo/antagonistas & inibidores , Interferência de RNA , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/virologia
7.
Cell Oncol (Dordr) ; 38(3): 215-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821107

RESUMO

BACKGROUND: The cyclin-dependent kinase inhibitor p27(Kip1) is known to act as a putative tumor suppressor in several human cancers, including cervical cancer. Down-regulation of p27(Kip1) may occur either through transcription inhibition or through phosphorylation-dependent proteolytic degradation. As yet, the mechanism underlying p27(Kip1) down-regulation and its putative downstream effects on cervical cancer development are poorly understood. Here we assessed the expression and sub-cellular localization of p27(Kip1) and its effects on proliferation, cell cycle progression and (inhibition of) apoptosis in cervical cancer cells. METHODS: Primary cervical cancer samples (n = 70), normal cervical tissue samples (n = 30) and cervical cancer-derived cell lines (n = 8) were used to assess the expression of p27(Kip1) and AKT1 by RT-PCR, Western blotting and immunohistochemistry, respectively. The effects of the PI3K inhibitor LY294004 and the proteasome inhibitor MG132 on cervical cancer cell proliferation were investigated using a MTT assay. Apoptosis and cell cycle analyses were carried out using flow cytometry, and sub-cellular p27(Kip1) localization analyses were carried out using immunofluorescence assays. RESULTS: We observed p27(Kip1) down-regulation (p = 0.045) and AKT1 up-regulation (p = 0.046) in both the primary cervical cancer samples and the cervical cancer-derived cell lines, compared to the normal cervical tissue samples tested. Treatment of cervical cancer-derived cell lines with the PI3K inhibitor LY294002 resulted in a reduced AKT1 activity. We also observed a dose-dependent inhibition of cell viability after treatment of these cell lines with the proteasome inhibitor MG132. Treatment of the cells with LY294002 resulted in a G1 cell cycle arrest, a nuclear expression of p27(Kip1), and a cytoplasmic p27(Kip1) accumulation after subsequent treatment with MG132. Additionally, we found that the synergistic effect of MG132 and LY294002 resulted in a sub-G1 cell cycle arrest and apoptosis induction through poly (ADP-ribose) polymerase (PARP) cleavage. CONCLUSION: Our data suggest that p27(Kip1) down-regulation in cervical cancer cells is primarily regulated through PI3K/AKT-mediated proteasomal degradation. The observed synergistic effect of the MG132 and LY294002 inhibitors may form a basis for the design of novel cervical cancer therapies.


Assuntos
Carcinoma de Células Escamosas/patologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/patologia , Adulto , Apoptose/fisiologia , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Regulação para Baixo , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Neoplasias do Colo do Útero/metabolismo
8.
Mol Biol Int ; 2014: 574850, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386362

RESUMO

As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2-7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the "MCM paradox." Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

9.
Biomed Res Int ; 2014: 581403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25114911

RESUMO

In the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples. DNA hypomethylating drug 5-AZA-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A treatments in cell lines reactivate both CXCR4 transcription and protein expression. Cell adhesion assay demonstrated that autocrine SDF-1α promotes the loss of cell adhesion while paracrine SDF-1α predominantly protects the normal cervical cells from loss of cell adhesion. Cervical cancer cell line C-33A having increased expression of CXCR4 after TSA treatment showed increased cell adhesion by paracrine source of SDF-1α in comparison to untreated C-33A. These findings demonstrate the first evidence that epigenetic silencing of CXCR4 makes the cells inefficient to respond to the paracrine source of SDF-1α leading to loss of cell adhesion, one of the key events in metastases and progression of the disease. Our results provide novel insight of SDF-1α/CXCR4 signaling in tumor microenvironment which may be promising to further delineate molecular mechanism of cervical carcinogenesis.


Assuntos
Adesão Celular/genética , Inativação Gênica/fisiologia , Receptores CXCR4/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Linhagem Celular Tumoral , Colo do Útero/química , Colo do Útero/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Metilação de DNA , Feminino , Humanos , Pessoa de Meia-Idade , Receptores CXCR4/metabolismo , Microambiente Tumoral , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
10.
J Cancer ; 5(8): 655-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157276

RESUMO

The Forkhead transcription factor FOXO1, an important downstream target of phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, regulates cellular homeostasis by maintaining cell proliferation, apoptosis and viability in normal cells. Though, the function and regulation of FOXO1 is well documented in many cancers, the molecular mechanism of its regulation in cervical cancer is largely unknown. In the present study we have investigated the role of PI3K inhibition on FOXO1 regulation. Expression profiling of primary tumors and cell lines show over expression of PIK3CA and AKT1; and down regulation of FOXO1. Lack of FOXO1 promoter methylation and inability of hypomethylating drug 5-Aza-2'-deoxycytidine and HDAC inhibitor trichostatin A to reactivate FOXO1 expression suggest that loss of FOXO1 expression is due to mechanisms other than promoter methylation/acetylation. Inhibition of PI3K by LY294002 decreased the level of p-AKT1 and activated FOXO1 transcription factor. We demonstrate that activation of FOXO1 induces apoptosis, cell proliferation arrest, and decreased cell viability in cervical cancer cell lines. Our data suggest that frequent down regulation of FOXO1 and its functional inactivation may be due to post-translational modifications in cervical cancer. Together, these observations suggest that activation of FOXO1 and its nuclear sequestration is critical in the regulation of cell proliferation, cell viability and apoptosis in cervical cancer. Hence, PI3K/AKT pathway may be a potential molecular target for cervical cancer therapy.

11.
FASEB J ; 28(5): 2260-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24469992

RESUMO

The FERM domain containing protein Kindlin-3 has been recognized as a major regulator of integrin function in hematopoietic cells, but its role in neoplasia is totally unknown. We have examined the relationship between Kindlin-3 and breast cancer in mouse models and human tissues. Human breast tumors showed a ∼7-fold elevation in Kindlin-3 mRNA compared with nonneoplastic tissue by quantitative polymerase chain reaction. Kindlin-3 overexpression in a breast cancer cell line increased primary tumor growth and lung metastasis by 2.5- and 3-fold, respectively, when implanted into mice compared with cells expressing vector alone. Mechanistically, the Kindlin-3-overexpressing cells displayed a 2.2-fold increase in vascular endothelial growth factor (VEGF) secretion and enhanced ß1 integrin activation. Increased VEGF secretion resulted from enhanced production of Twist, a transcription factor that promotes tumor angiogenesis. Knockdown of Twist diminished VEGF production, and knockdown of ß1 integrins diminished Twist and VEGF production by Kindlin-3-overexpressing cells, while nontargeting small interfering RNA had no effect on expression of these gene products. Thus, Kindlin-3 influences breast cancer progression by influencing the crosstalk between ß1 integrins and Twist to increase VEGF production. This signaling cascade enhances breast cancer cell invasion and tumor angiogenesis and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Integrina beta1/metabolismo , Camundongos , Camundongos SCID , Metástase Neoplásica , Estrutura Terciária de Proteína , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Biochim Biophys Acta ; 1838(2): 579-88, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23891718

RESUMO

Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Assuntos
Matriz Extracelular/metabolismo , Integrinas/metabolismo , Talina/metabolismo , Animais , Humanos , Transdução de Sinais
13.
PLoS One ; 8(7): e69607, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874974

RESUMO

Minichromosome Maintenance (MCM) proteins play important roles in cell cycle progression by mediating DNA replication initiation and elongation. Among 10 MCM homologues MCM 2-7 form a hexamer and assemble to the pre-replication complex acting as replication licensing factors. Binding and function of MCM2-7 to pre-replication complex is regulated by MCM10 mediated binding of RECQL4 with MCM2-7. The purpose of this study is to explore the role of MCMs in cervical cancer and their correlation with the clinical parameters of cervical cancer. We have investigated sixty primary cervical cancer tissue samples, eight cervical cancer cell lines and thirty hysterectomised normal cervical tissue. The expression profiling of MCMs was done using semi-quantitative RT-PCR, immunoblotting and immunohistochemistry. MCM2, 4, 5, 6, 7, 10 and RECQL4 are significantly over-expressed in cervical cancer. Among these, MCM4, 6 and 10 show increased frequency of over expression along with advancement of tumor stages. MCM4, 5 and 6 also show differential expression in different types of lesion, while MCM2 and MCM10 are over expressed in cervical cancer irrespective of clinico-pathological parameters. Our data indicates the role of MCM4, MCM5, MCM6, MCM10 and RECQL4 in the progression of cervical cancer.


Assuntos
Proteínas de Manutenção de Minicromossomo/genética , Neoplasias do Colo do Útero/genética , Alphapapillomavirus/isolamento & purificação , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias do Colo do Útero/virologia
14.
Mol Cancer Res ; 9(11): 1500-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875932

RESUMO

Integrins are adhesion receptors involved in bidirectional signaling that are crucial for various cellular responses during normal homeostasis and pathologic conditions such as cancer progression and metastasis. Aberrant expression of noncoding microRNAs (miRNA) has been implicated in the deregulation of integrin expression and activity, leading to the development and progression of cancer tumors, including their acquisition of the metastatic phenotype. miR-31 is a key regulator of several critical genes involved in the invasion-metastasis cascade in cancer. Using diverse cell-based, genetic, biochemical, flow cytometry, and functional analyses, we report that miR-31 is a master regulator of integrins as it targets multiple α subunit partners (α2, α5, and αV) of ß1 integrins and also ß3 integrins. We found that expression of miR-31 in cancer cells resulted in a significant repression of these integrin subunits both at the mRNA and protein levels. Loss of expression of α2, α5, αV, and ß3 was a direct consequence of miR-31 targeting conserved seed sequences in the 3' untranslated region of these integrin subunits leading to their posttranscriptional repression, which was reflected in their diminished surface expression in live cells. The biological consequence of decreased the cell surface of these integrins was a significant inhibition of cell spreading in a ligand-dependent manner. Although different reports have shown that a single integrin can be regulated by several miRNAs, here we show that a single miRNA, miR-31, is able to specifically target several integrin subunits to regulate key aspects of cancer cell invasion and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Integrina beta1/biossíntese , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , MicroRNAs/genética , Transdução de Sinais , Transfecção
15.
Int J Cancer ; 129(6): 1331-43, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21105030

RESUMO

WAVE3, an actin cytoskeleton remodeling protein, is highly expressed in advanced stages of breast cancer and influences tumor cell invasion. Loss of miR-31 has been associated with cancer progression and metastasis. Here, we show that the activity of WAVE3 to promote cancer cell invasion is regulated by miR-31. An inverse correlation was demonstrated between expression levels of WAVE3 and miR-31 in invasive versus noninvasive breast cancer cell lines. miR-31 directly targeted the 3'-UTR of the WAVE3 mRNA and inhibited its expression in the invasive cancer cells, i.e., miR-31-mediated down-regulation of WAVE3 resulted in a significant reduction in the invasive phenotype of cancer cells. This relationship was specific to the loss of WAVE3 expression because re-expression of a miR-31-resistant form of WAVE3 reversed miR-31-mediated inhibition of cancer cell invasion. Furthermore, expression of miR-31 correlates inversely with breast cancer progression in humans, where an increase in expression of miR-31 target genes was observed as the tumors progressed to more aggressive forms. In conclusion, a novel mechanism for the regulation of WAVE3 expression in cancer cells has been identified, which controls the invasive properties of cancer cells. The study also identifies a critical role for WAVE3, downstream of miR-31, in the invasion-metastasis cascade.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Metástase Neoplásica/prevenção & controle , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA