Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 19(11): e202400037, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38459687

RESUMO

Non-invasive delivery of drugs is important for the reversal of respiratory diseases essentially by-passing metabolic pathways and targeting large surface area of drug absorption. Here, we study the inhalation of a redox nano medicine namely citrate functionalized Mn3O4 (C-Mn3O4) duly encapsulated in droplet evaporated aerosols for the balancing of oxidative stress generated by the exposure of Chromium (VI) ion, a potential lung carcinogenic agent. Our optical spectroscopic in-vitro experiments demonstrates the efficacy of redox balancing of the encapsulated nanoparticles (NP) for the maintenance of a homeostatic condition. The formation of Cr-NP complex as an excretion of the heavy metal is also demonstrated through optical spectroscopic and high resolution transmission optical microscopy (HRTEM). Our studies confirm the oxidative stress mitigation activity of the Cr-NP complex. A detailed immunological assay followed by histopathological studies and assessment of mitochondrial parameters in pre-clinical mice model with chromium (Cr) induced lung inflammation establishes the mechanism of drug action to be redox-buffering. Thus, localised delivery of C-Mn3O4 NPs in the respiratory tract via aerosols can act as an effective nanotherapeutic agent against oxidative stress induced lung inflammation.


Assuntos
Cromo , Nanopartículas , Oxirredução , Estresse Oxidativo , Pneumonia , Estresse Oxidativo/efeitos dos fármacos , Animais , Camundongos , Cromo/química , Cromo/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Nanopartículas/química , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nanomedicina , Óxidos/química , Óxidos/farmacologia , Sistemas de Liberação de Medicamentos , Ácido Cítrico/química , Humanos , Tamanho da Partícula
2.
Pediatr Res ; 93(4): 827-837, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35794251

RESUMO

BACKGROUND: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. We investigated a novel spinel-structured citrate-functionalized trimanganese tetroxide nanoparticle (C-Mn3O4 NP, the nanodrug) to degrade both systemic and neural bilirubin loads. METHOD: Severe neonatal unconjugated hyperbilirubinemia (SNH) was induced in neonatal C57BL/6j mice model with phenylhydrazine (PHz) intoxication. Efficiency of the nanodrug on both in vivo bilirubin degradation and amelioration of bilirubin encephalopathy and associated neurobehavioral sequelae were evaluated. RESULTS: Single oral dose (0.25 mg kg-1 bodyweight) of the nanodrug reduced both total serum bilirubin (TSB) and unconjugated bilirubin (UCB) in SNH rodents. Significant (p < 0.0001) UCB and TSB-degradation rates were reported within 4-8 h at 1.84 ± 0.26 and 2.19 ± 0.31 mg dL-1 h-1, respectively. Neural bilirubin load was decreased by 5.6 nmol g-1 (p = 0.0002) along with improved measures of neurobehavior, neuromotor movements, learning, and memory. Histopathological studies confirm that the nanodrug prevented neural cell reduction in Purkinje and substantia nigra regions, eosinophilic neurons, spongiosis, and cell shrinkage in SNH brain parenchyma. Brain oxidative status was maintained in nanodrug-treated SNH cohort. Pharmacokinetic data corroborated the bilirubin degradation rate with plasma nanodrug concentrations. CONCLUSION: This study demonstrates the in vivo capacity of this novel nanodrug to reduce systemic and neural bilirubin load and reverse bilirubin-induced neurotoxicity. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemopreventive approach to clinical settings. IMPACT: None of the current pharmacotherapeutics treat severe neonatal hyperbilirubinemia (SNH) to prevent risks of neurotoxicity. In this preclinical study, a newly investigated nano-formulation, citrate-functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs), exhibits bilirubin reduction properties in rodents. Chemopreventive properties of this nano-formulation demonstrate an efficacious, efficient agent that appears to be safe in these early studies. Translation of C-Mn3O4 NPs to prospective preclinical and clinical trials in appropriate in vivo models should be explored as a potential novel pharmacotherapy for SNH.


Assuntos
Hiperbilirrubinemia Neonatal , Kernicterus , Compostos de Manganês , Animais , Camundongos , Bilirrubina , Quimioprevenção , Hiperbilirrubinemia Neonatal/prevenção & controle , Kernicterus/prevenção & controle , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Animais Recém-Nascidos , Modelos Animais de Doenças , Compostos de Manganês/administração & dosagem , Nanopartículas/administração & dosagem
3.
Dalton Trans ; 50(8): 3027-3036, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33570060

RESUMO

Aluminum toxicity in biological systems is a well-known issue yet remains as a prevalent and unsolvable problem due to the lack of proper molecular tools that can detect free aluminum(iii) or Al(iii) ions in vivo. Herein, we report a water-soluble photo-induced electron transfer (PET)-based turn-ON/OFF fluorometric chemosensor for the dual detection of Al(iii) and fluoride ions in aqueous media with a nanomolar (∼1.7 × 10-9 M) and picomolar (∼2 × 10-12 M, lowest ever detection so far) detection limit, respectively. Fluoride ions in sea water could be detected as well as the recognition of non-contamination in drinking water. In addition, using live-cell microscopy, Al(iii) ions were detected in live biological samples in vivo to aid establishing the aluminum-toxicity effect.


Assuntos
Alumínio/toxicidade , Corantes Fluorescentes/química , Fluoretos/análise , Alumínio/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Íons/análise , Camundongos , Estrutura Molecular , Imagem Óptica , Células RAW 264.7
4.
RSC Adv ; 9(52): 30216-30225, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35530237

RESUMO

Treatment of cancer using nanoparticles made of inorganic and metallic compounds has been increasingly used, owing to their novel intrinsic physical properties and their potential to interact with specific cellular sites, thereby significantly reducing severe secondary effects. In this study, we report a facile strategy for synthesis of folate capped Mn3O4 nanoparticles (FA-Mn3O4 NPs) with high colloidal stability in aqueous media using a hydrothermal method for potential application in photodynamic therapy (PDT) of cancer. The capping of FA to Mn3O4 NPs was confirmed using various spectroscopic techniques. In adenocarcinomic human alveolar basal epithelial cells (A549), the nanohybrid synthesised with a combination of FA and Mn3O4 shows remarkable PDT activity via intracellular ROS generation (singlet oxygen). As established by a DNA fragmentation assay and fluorescence studies, the nanohybrid can cause significant nuclear DNA damage by light induced enhanced ROS generation. In the assessment of Bax, Bcl2 provides strong evidence of apoptotic cellular death. Cumulatively, the outcomes of this study suggest that these newly synthesized FA-Mn3O4 NPs can specifically destroy cells with overexpressed folate receptors, thereby providing a solution in the journey of cancer eradication.

5.
ACS Omega ; 3(11): 15975-15987, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30556021

RESUMO

Ubiquitousness in the target organs and associated oxidative stress are the most common manifestations of heavy-metal poisoning in living bodies. While chelation of toxic heavy metals is important as therapeutic strategy, scavenging of increased reactive oxygen species, reactive nitrogen species and free radicals are equally important. Here, we have studied the lead (Pb) chelating efficacy of a model flavonoid morin using steady-state and picosecond-resolved optical spectroscopy. The efficacy of morin in presence of other flavonoid (naringin) and polyphenol (ellagic acid) leading to synergistic combination has also been confirmed from the spectroscopic studies. Our studies further reveal that antioxidant activity (2,2-diphenyl-1-picrylhydrazyl assay) of the Pb-morin complex is sustainable compared to that of Pb-free morin. The metal-morin chelate is also found to be significantly soluble compared to that of morin in aqueous media. Heavy-metal chelation and sustainable antioxidant activity of the soluble chelate complex are found to accelerate the Pb-detoxification in the chemical bench (in vitro). Considering the synergistic effect of flavonoids in Pb-detoxification and their omnipresence in medicinal plants, we have prepared a mixture (SKP17LIV01) of flavonoids and polyphenols of plant origin. The mixture has been characterized using high-resolution liquid chromatography assisted mass spectrometry. The mixture (SKP17LIV01) containing 34 flavonoids and 76 other polyphenols have been used to investigate the Pb detoxification in mouse model. The biochemical and histopathological studies on the mouse model confirm the dual action in preclinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA