Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Cell Dev Biol ; 9: 662522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055792

RESUMO

Viruses interact with the host cellular pathways to optimize cellular conditions for replication. The Human Cytomegalovirus (HCMV) Immediate-Early protein 1 (IE1) is the first viral protein to express during infection. It is a multifunctional and conditionally essential protein for HCMV infection. SUMO signaling regulates several cellular pathways that are also targets of IE1. Consequently, IE1 exploits SUMO signaling to regulate these pathways. The covalent interaction of IE1 and SUMO (IE1-SUMOylation) is well studied. However, the non-covalent interactions between SUMO and IE1 are unknown. We report two SUMO-Interacting Motifs (SIMs) in IE1, one at the end of the core domain and another in the C-terminal domain. NMR titrations showed that IE1-SIMs bind to SUMO1 but not SUMO2. Two critical functions of IE1 are inhibition of SUMOylation of Promyelocytic leukemia protein (PML) and transactivation of viral promoters. Although the non-covalent interaction of IE1 and SUMO is not involved in the inhibition of PML SUMOylation, it contributes to the transactivation activity. The transactivation activity of IE1 was previously correlated to its ability to inhibit PML SUMOylation. Our results suggest that transactivation and inhibition of PML SUMOylation are independent activities of IE1.

2.
Hum Mutat ; 42(2): 200-212, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314489

RESUMO

The discovery of high-risk breast cancer susceptibility genes, such as Breast cancer associated gene 1 (BRCA1) and Breast cancer associated gene 2 (BRCA2) has led to accurate identification of individuals for risk management and targeted therapy. The rapid decline in sequencing costs has tremendously increased the number of individuals who are undergoing genetic testing world-wide. However, given the significant differences in population-specific variants, interpreting the results of these tests can be challenging especially for novel genetic variants in understudied populations. Here we report the characterization of novel variants in the Malaysian and Singaporean population that consist of different ethnic groups (Malays, Chinese, Indian, and other indigenous groups). We have evaluated the functional significance of 14 BRCA2 variants of uncertain clinical significance by using multiple in silico prediction tools and examined their frequency in a cohort of 7840 breast cancer cases and 7928 healthy controls. In addition, we have used a mouse embryonic stem cell (mESC)-based functional assay to assess the impact of these variants on BRCA2 function. We found these variants to be functionally indistinguishable from wild-type BRCA2. These variants could fully rescue the lethality of Brca2-null mESCs and exhibited no sensitivity to six different DNA damaging agents including a poly ADP ribose polymerase inhibitor. Our findings strongly suggest that all 14 evaluated variants are functionally neutral. Our findings should be valuable in risk assessment of individuals carrying these variants.


Assuntos
Neoplasias da Mama , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Testes Genéticos , Humanos , Malásia , Camundongos
3.
BMC Biol ; 18(1): 110, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867776

RESUMO

BACKGROUND: To successfully invade new hosts, plant viruses must break host resistance and be competent to move within and between plant cells. As a means, viral proteins known as pathogenicity determinants have evolved to coordinate a network of protein interactions. The ßC1 protein encoded by specific geminiviral satellites acts as a key pathogenicity determinant for this disease-causing family of plant viruses. Post-translational modifications (PTMs) such as ubiquitination and phosphorylation of the ßC1 protein have been shown to occur in diverse viruses. However, the relevance of these and other layers of PTMs in host-geminiviral interactions has not been fully understood. RESULTS: Here we identified the significance of a novel layer of PTMs in the ßC1 protein of Synedrella yellow vein clearing virus (SyYVCV), a newly identified member of the Begomovirus genus of Geminiviruses. This protein has conserved SUMOylation and SUMO-interacting motifs (SIMs), and we observed SUMOylation of SyYVCV ßC1 in host plants as a defensive strategy against ubiquitin-mediated degradation. Counteracting this, SIMs encoded in ßC1 mediate the degradation of ßC1; however, both these PTMs are essential for the function of ßC1 protein since SIM and SUMOylation motif mutants failed to promote pathogenicity and viral replication in vivo. SUMOylation in different motifs of ßC1 led to functionally distinct outcomes, regulating the stability and function of the ßC1 protein, as well as increased global SUMOylation of host proteins. CONCLUSION: Our results indicate the presence of a novel mechanism mediating a fine balance between defence and counter-defence in which a SIM site is competitively sought for degradation and, as a counter-defence, ßC1 undergoes SUMOylation to escape from its degradation.


Assuntos
Begomovirus/fisiologia , Begomovirus/patogenicidade , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Proteínas Virais/metabolismo , Plantas Geneticamente Modificadas/virologia , Processamento de Proteína Pós-Traducional , Sumoilação , Virulência
4.
Elife ; 92020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017701

RESUMO

Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.


Assuntos
Técnicas Biossensoriais , Proteínas Proto-Oncogênicas c-fyn , Transdução de Sinais/genética , Animais , Linhagem Celular , Fenômenos Fisiológicos Celulares/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-fyn/química , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Leveduras/genética
5.
J Mol Biol ; 432(7): 1952-1977, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32001251

RESUMO

When the herpes simplex virus (HSV) genome enters the nucleus for replication and transcription, phase-segregated nuclear protein bodies called Promyelocytic leukemia protein nuclear bodies (PML NBs) colocalize with the genome and repress it. HSV encodes a small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligase (STUbL) infected cell polypeptide 0 (ICP0) that degrades PML NBs to alleviate the repression. The molecular details of the mechanism used by ICP0 to target PML NBs are unclear. Here, we identify a bona fide SUMO-interacting motif in ICP0 (SIM-like sequence [SLS] 4) that is essential and sufficient to target SUMOylated proteins in PML NBs such as the PML and Sp100. We shown that phosphorylation of SLS4 creates new salt bridges between SUMO and SLS4, increases the SUMO/SLS4 affinity, and switches ICP0 into a potent STUbL. HSV activates the Ataxia-telangiectasia-mutated kinase-Checkpoint kinase 2 (ATM-Chk2) pathway to regulate the cell cycle of the host. We report that the activated Chk2 also phosphorylates ICP0 at SLS4 and enhances its STUbL activity. Our results uncover that a viral STUbL counters antiviral response by exploiting an unprecedented cross-talk of three post-translational modifications: ubiquitination, SUMOylation, and phosphorylation.


Assuntos
Quinase do Ponto de Checagem 2/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/genética , Células HEK293 , Humanos , Fosforilação , Conformação Proteica , Domínios Proteicos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
6.
Nat Commun ; 10(1): 452, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692525

RESUMO

Domain swapping is the process by which identical monomeric proteins exchange structural elements to generate dimers/oligomers. Although engineered domain swapping is a compelling strategy for protein assembly, its application has been limited due to the lack of simple and reliable design approaches. Here, we demonstrate that the hydrophobic five-residue 'cystatin motif' (QVVAG) from the domain-swapping protein Stefin B, when engineered into a solvent-exposed, tight surface loop between two ß-strands prevents the loop from folding back upon itself, and drives domain swapping in non-domain-swapping proteins. High-resolution structural studies demonstrate that engineering the QVVAG stretch independently into various surface loops of four structurally distinct non-domain-swapping proteins enabled the design of different modes of domain swapping in these proteins, including single, double and open-ended domain swapping. These results suggest that the introduction of the QVVAG motif can be used as a mutational approach for engineering domain swapping in diverse ß-hairpin proteins.


Assuntos
Motivos de Aminoácidos/genética , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Cistatina B/química , Cistatina B/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Engenharia de Proteínas/métodos , Homologia de Sequência de Aminoácidos
7.
J Cell Physiol ; 233(2): 1685-1699, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28681929

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are a class of drugs that are mainly used to treat pain, inflammation, and fever via cyclooxygenase-2 (COX-2) inhibition. There are abundant findings that uncover the hidden critical chemotherapeutics potential of NSAIDs in cancer treatment. However, still the precise mechanism by which NSAIDs could be used as an effective anti-tumor agent in the prevention of carcinogenesis is not well understood. Here, we show that indomethacin, a well-known NSAID, induces proteasomal dysfunction that results in accumulation of unwanted proteins, mitochondrial abnormalities, and successively stimulate apoptosis in cells. We observed the interaction of indomethacin with proteasome and noticed the massive accumulation of intracellular ubiquitin-positive proteins, which might be due to the suppression of proteasome activities. Furthermore, we also found that exposure of indomethacin causes the accumulation of critical proteasomal substrates that consequently generate severe mitochondrial abnormalities and prompt up key apoptotic events in cells. Our results demonstrate how indomethacin affects normal proteasomal functions and induces mitochondrial apoptosis in cells. These findings also improve our current understanding of how NSAIDs can exhibit crucial anti-proliferative effects in cells. In near future, our findings may suggest a new possible strategy for the development of specific proteasome inhibitors in conjunction with other chemo-preventive anticancer agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Indometacina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Células A549 , Animais , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/química , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Indometacina/química , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Agregados Proteicos , Ligação Proteica , Proteólise , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Tempo , Ubiquitinação
8.
Structure ; 25(5): 794-805.e5, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28434917

RESUMO

Conformational dynamics plays a fundamental role in molecular recognition and activity in enzymes. The ubiquitin-conjugating enzyme (E2) Ube2g2 functions with the ubiquitin ligase (E3) gp78 to assemble poly-ubiquitin chains on target substrates. Two domains in gp78, RING and G2BR, bind to two distant regions of Ube2g2, and activate it for ubiquitin (Ub) transfer. G2BR increases the affinity between the RING and Ube2g2 by 50-fold, while the RING catalyzes the transfer of Ub from the Ube2g2∼Ub conjugate. How G2BR and RING activate Ube2g2 is unclear. In this work, conformational dynamics in Ube2g2 revealed a clear correlation of binding G2BR and RING with the sequential progression toward Ub transfer. The interrelationship of the existence and exchange between ground and excited states leads to a dynamic energy landscape model, in which redistribution of populations contributes to allostery and activation. These findings provide insight into gp78's modulation of conformational exchange in Ube2g2 to stimulate ubiquitination.


Assuntos
Sítio Alostérico , Receptores do Fator Autócrino de Motilidade/química , Enzimas de Conjugação de Ubiquitina/química , Ubiquitinação , Regulação Alostérica , Humanos , Simulação de Dinâmica Molecular , Receptores do Fator Autócrino de Motilidade/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
9.
EMBO J ; 32(18): 2504-16, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23942235

RESUMO

RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin-conjugating enzymes (E2s) charged with ubiquitin. How low-affinity RING-E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high-affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR-induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2-binding sites coordinately facilitate processive ubiquitination.


Assuntos
Regulação Alostérica/fisiologia , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Conformação Proteica , Receptores do Fator Autócrino de Motilidade/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica
10.
Structure ; 20(12): 2138-50, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23123110

RESUMO

Recognition of ubiquitin and polyubiquitin chains by ubiquitin-binding domains (UBDs) is vital for ubiquitin-mediated signaling pathways. The endoplasmic reticulum resident RING finger ubiquitin ligase (E3) gp78 regulates critical proteins via the ubiquitin-proteasome system to maintain cellular homeostasis and includes a UBD known as the CUE domain, which is essential for function. A probable role of this domain is to recognize ubiquitin-modified substrates, enabling gp78 to assemble polyubiquitin chains on these substrates and mark them for degradation. Here, we report the molecular details of the interaction of gp78CUE domain with ubiquitin and diubiquitin. The gp78CUE domain exhibits a well-defined set of interactions with ubiquitin and a dynamic, promiscuous interaction with diubiquitin chains. This leads to a model in which the CUE domain functions to both facilitate substrate binding and enable switching between adjacent ubiquitin molecules of a growing chain to enable processivity in ubiquitination.


Assuntos
Poliubiquitina/química , Receptores do Fator Autócrino de Motilidade/química , Sequência de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Termodinâmica
11.
Hum Mol Genet ; 21(18): 3993-4006, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22678057

RESUMO

Single-nucleotide substitutions and small in-frame insertions or deletions identified in human breast cancer susceptibility genes BRCA1 and BRCA2 are frequently classified as variants of unknown clinical significance (VUS) due to the availability of very limited information about their functional consequences. Such variants can most reliably be classified as pathogenic or non-pathogenic based on the data of their co-segregation with breast cancer in affected families and/or their co-occurrence with a pathogenic mutation. Biological assays that examine the effect of variants on protein function can provide important information that can be used in conjunction with available familial data to determine the pathogenicity of VUS. In this report, we have used a previously described mouse embryonic stem (mES) cell-based functional assay to characterize eight BRCA2 VUS that affect highly conserved amino acid residues and map to the N-terminal PALB2-binding or the C-terminal DNA-binding domains. For several of these variants, very limited co-segregation information is available, making it difficult to determine their pathogenicity. Based on their ability to rescue the lethality of Brca2-deficient mES cells and their effect on sensitivity to DNA-damaging agents, homologous recombination and genomic integrity, we have classified these variants as pathogenic or non-pathogenic. In addition, we have used homology-based modeling as a predictive tool to assess the effect of some of these variants on the structural integrity of the C-terminal DNA-binding domain and also generated a knock-in mouse model to analyze the physiological significance of a residue reported to be essential for the interaction of BRCA2 with meiosis-specific recombinase, DMC1.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Células-Tronco Embrionárias/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Proteína BRCA2/química , Proteínas de Ciclo Celular , Sobrevivência Celular , Células Cultivadas , Mapeamento Cromossômico , Sequência Conservada , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Estudos de Associação Genética , Humanos , Funções Verossimilhança , Masculino , Camundongos , Camundongos Transgênicos , Mitomicina/farmacologia , Modelos Moleculares , Mutagênicos/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína
12.
Blood ; 118(9): 2430-42, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21719596

RESUMO

Biallelic mutations in the human breast cancer susceptibility gene, BRCA2, are associated with Fanconi anemia, implying that some persons who inherit 2 deleterious variants of BRCA2 are able to survive even though it is well established that BRCA2 is indispensable for viability in mice. One such variant, IVS7 + 2T > G, results in premature protein truncation because of skipping of exon 7. Surprisingly, the persons who are either IVS7 + 2T > G homozygous or compound heterozygous are born alive but die of malignancy associated with Fanconi anemia. Using a mouse embryonic stem cell-based functional assay, we found that the IVS7 + 2T > G allele produces an alternatively spliced transcript lacking exons 4-7, encoding an in-frame BRCA2 protein with an internal deletion of 105 amino acids (BRCA2(Δ105)). We demonstrate that BRCA2(Δ105) is proficient in homologous recombination-mediated DNA repair as measured by different functional assays. Evaluation of this transcript in normal and leukemia cells suggests that BRCA2(Δ105) may contribute to the viability of persons inheriting this mutation. In this study, we have also characterized 5 other BRCA2 variants and found 3 of these (p.L2510P, p.R2336H, and p.W2626C) to be deleterious and 2 (p.I2490T and p.K2729N) probably neutral. Such studies are important to understand the functional significance of unclassified BRCA2 variants.


Assuntos
Anemia de Fanconi/genética , Genes BRCA2 , Teste de Complementação Genética , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cromossomos Artificiais Bacterianos/genética , Células-Tronco Embrionárias , Éxons/genética , Genótipo , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Sítios de Splice de RNA/genética , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico
13.
Mol Cell ; 34(6): 674-85, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19560420

RESUMO

The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an approximately 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.


Assuntos
Receptores de Citocinas/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Domínios RING Finger , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/metabolismo , Receptores de Citocinas/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA