Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793620

RESUMO

Hepatitis C virus (HCV) infects the human liver, and its chronic infection is one of the major causes of Hepatocellular carcinoma. Translation of HCV RNA is mediated by an Internal Ribosome Entry Site (IRES) element located in the 5'UTR of viral RNA. Several RNA Binding proteins of the host interact with the HCV IRES and modulate its function. Here, we demonstrate that PSPC1 (Paraspeckle Component 1), an essential paraspeckle component, upon HCV infection is relocalized and interacts with HCV IRES to prevent viral RNA translation. Competition UV-crosslinking experiments showed that PSPC1 interacts explicitly with the SLIV region of the HCV IRES, which is known to play a vital role in ribosomal loading to the HCV IRES via interaction with Ribosomal protein S5 (RPS5). Partial silencing of PSPC1 increased viral RNA translation and, consequently, HCV replication, suggesting a negative regulation by PSPC1. Interestingly, the silencing of PSPC1 protein leads to an increased interaction of RPS5 at the SLIV region, leading to an overall increase in the viral RNA in polysomes. Overall, our results showed how the host counters viral infection by relocalizing nuclear protein to the cytoplasm as a survival strategy.


Assuntos
Hepacivirus , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Viral , Proteínas de Ligação a RNA , Proteínas Ribossômicas , Humanos , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/virologia , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno , Ligação Proteica , Proteínas Ribossômicas/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral
2.
Arch Virol ; 169(5): 112, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683226

RESUMO

Previously, we reported a neutralizing monoclonal antibody, A8A11, raised against a novel conserved epitope within the hepatitis C virus (HCV) E2 protein, that could significantly reduce HCV replication. Here, we report the nucleotide sequence of A8A11 and demonstrate the efficacy of a single-chain variable fragment (scFv) protein that mimics the antibody, inhibits the binding of an HCV virus-like particle to hepatocytes, and reduces viral RNA replication in a cell culture system. More importantly, scFv A8A11 was found to effectively restrict the increase of viral RNA levels in the serum of HCV-infected chimeric mice harbouring human hepatocytes. These results suggest a promising approach to neutralizing-antibody-based therapeutic interventions against HCV infection.


Assuntos
Epitopos , Hepacivirus , Hepatócitos , Anticorpos de Cadeia Única , Proteínas do Envelope Viral , Internalização do Vírus , Hepacivirus/imunologia , Hepacivirus/genética , Hepacivirus/fisiologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Hepatócitos/virologia , Hepatócitos/imunologia , Animais , Humanos , Epitopos/imunologia , Camundongos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Hepatite C/virologia , Hepatite C/imunologia , Anticorpos Neutralizantes/imunologia , Replicação Viral , Anticorpos Monoclonais/imunologia
3.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
4.
Wiley Interdiscip Rev RNA ; : e1826, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985142

RESUMO

Host factors play essential roles in viral infection, and their interactions with viral proteins are necessary for establishing effective pathogenesis. p53 is a host factor that maintains genomic integrity by controlling cell-cycle progression and cell survival. It is a well-known tumor suppressor protein that gets activated by various stress signals, thereby regulating cellular pathways. The cellular outcomes from different stresses are tightly related to p53 dynamics, including its alterations at gene, mRNA, or protein levels. p53 also contributes to immune responses leading to the abolition of viral pathogens. In turn, the viruses have evolved strategies to subvert p53-mediated host responses to improve their life cycle and pathogenesis. Some viruses attenuate wild-type p53 (WT-p53) function for successful pathogenesis, including degradation and sequestration of p53. In contrast, some others exploit the WT-p53 function through regulation at the transcriptional/translational level to spread infection. One area in which the importance of such host factors is increasingly emerging is the positive-strand RNA viruses that cause fatal viral infections. In this review, we provide insight into all the possible mechanisms of p53 modulation exploited by the positive-strand RNA viruses to establish infection. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.

5.
PLoS Pathog ; 19(8): e1011552, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540723

RESUMO

Host protein HuR translocation from nucleus to cytoplasm following infection is crucial for the life cycle of several RNA viruses including hepatitis C virus (HCV), a major causative agent of hepatocellular carcinoma. HuR assists the assembly of replication-complex on the viral-3'UTR, and its depletion hampers viral replication. Although cytoplasmic HuR is crucial for HCV replication, little is known about how the virus orchestrates the mobilization of HuR into the cytoplasm from the nucleus. We show that two viral proteins, NS3 and NS5A, act co-ordinately to alter the equilibrium of the nucleo-cytoplasmic movement of HuR. NS3 activates protein kinase C (PKC)-δ, which in-turn phosphorylates HuR on S318 residue, triggering its export to the cytoplasm. NS5A inactivates AMP-activated kinase (AMPK) resulting in diminished nuclear import of HuR through blockade of AMPK-mediated phosphorylation and acetylation of importin-α1. Cytoplasmic retention or entry of HuR can be reversed by an AMPK activator or a PKC-δ inhibitor. Our findings suggest that efforts should be made to develop inhibitors of PKC-δ and activators of AMPK, either separately or in combination, to inhibit HCV infection.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Citoplasma/metabolismo , Hepatite C/metabolismo , Linhagem Celular Tumoral , Replicação Viral , Proteínas não Estruturais Virais/metabolismo
6.
Mol Cell Biol ; 43(7): 335-353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283188

RESUMO

Previous research has shown that Δ40p53, the translational isoform of p53, can inhibit cell growth independently of p53 by regulating microRNAs. Here, we explored the role of Δ40p53 in regulating the long noncoding RNA-micro-RNA-cellular process axis, specifically focusing on LINC00176. Interestingly, LINC00176 levels were predominantly affected by the overexpression/stress-mediated induction and knockdown of Δ40p53 rather than p53 levels. Additional assays revealed that Δ40p53 transactivates LINC00176 transcriptionally and could also regulate its stability. RNA immunoprecipitation experiments revealed that LINC00176 sequesters several putative microRNA targets, which could further titrate several mRNA targets involved in different cellular processes. To understand the downstream effects of this regulation, we ectopically overexpressed and knocked down LINC00176 in HCT116 p53-/- (harboring only Δ40p53) cells, which affected their proliferation, cell viability, and expression of epithelial markers. Our results provide essential insights into the pivotal role of Δ40p53 in regulating the novel LINC00176 RNA-microRNA-mRNA axis independent of FL-p53 and in maintaining cellular homeostasis.


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Isoformas de Proteínas/genética , Ciclo Celular , RNA Mensageiro/genética , RNA Longo não Codificante/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
7.
Mol Microbiol ; 118(5): 570-587, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36203260

RESUMO

Hepatitis C virus (HCV) infection is one of the most common causes of liver cancer. HCV infection causes chronic disease followed by cirrhosis, which often leads to hepatocellular carcinoma (HCC). In this study, we investigated the roles of exosome-associated miRNAs in HCV-induced disease pathology. Small RNA sequencing was performed to identify miRNAs that are differentially regulated in exosomes isolated from patient sera at two different stages of HCV infection: cirrhosis and hepatocellular carcinoma. Among the differentially expressed miRNAs, miR-375 was found to be significantly upregulated in exosomes isolated from patients with cirrhosis and HCC. A similar upregulation was observed in intracellular and extracellular/exosomal levels of miR-375 in HCV-JFH1 infected Huh7.5 cells. The depletion of miR-375 in infected cells inhibited HCV-induced cell migration and proliferation, suggesting a supportive role for miR-375 in HCV pathogenesis. miR-375, secreted through exosomes derived from HCV-infected cells, could also be transferred to naïve Huh7.5 cells, resulting in an increase in cell proliferation and migration in the recipient cells. Furthermore, we identified Insulin growth factor binding protein 4 (IGFBP4), a gene involved in cell growth and malignancy, as a novel target of miR-375. Our results demonstrate the critical involvement of exosome-associated miR-375 in HCV-induced disease progression.


Assuntos
Carcinoma Hepatocelular , Exossomos , Hepatite C , Neoplasias Hepáticas , MicroRNAs , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Exossomos/metabolismo , Exossomos/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Insulina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Hepatite C/genética , Hepatite C/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia
8.
J Gen Virol ; 103(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748628

RESUMO

Chronic hepatitis C virus (HCV) infection is a leading cause of end-stage liver diseases, such as fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Several cellular entities, including paraspeckles and their related components, are involved in viral pathogenesis and cancer progression. NEAT1 lncRNA is a major component of paraspeckles that has been linked to several malignancies. In this study, analysis of the Cancer Genome Atlas (TCGA) database and validation in HCV-induced HCC tissue and serum samples showed significantly high expression of NEAT1 in patients with liver cancer. Moreover, we found that NEAT1 levels increased upon HCV infection. To further understand the mechanism of NEAT1-induced HCC progression, we selected one of its targets, miR-9-5 p, which regulates BGH3 mRNA levels. Interestingly, miR-9-5 p levels were downregulated upon HCV infection, whereas BGH3 levels were upregulated. Additionally, partial NEAT1 knockdown increased miR-9-5 p levels and decreased BGH3 levels, corroborating our initial results. BGH3 levels were also upregulated in HCV-induced HCC and TCGA tissue samples, which could be directly correlated with NEAT1 levels. As a known oncogene, BGH3 is directly linked to HCC progression mediated by NEAT1. We also found that NEAT1 levels remained upregulated in serum samples from patients treated with direct-acting antivirals (DAA), indicating that NEAT1 might be a molecular trigger that promotes HCC development. Collectively, these findings provide molecular insights into HCV-induced HCC progression via the NEAT1-miR-9-BGH3 axis.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Antivirais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Hepacivirus/genética , Hepatite C Crônica/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética
9.
J Virol ; 95(21): e0091521, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406862

RESUMO

Coxsackievirus B3 (CVB3) is an enterovirus belonging to the family Picornaviridae. Its 5' untranslated region (UTR) contains a cloverleaf structure followed by an internal ribosome entry site (IRES). The cloverleaf forms an RNA-protein complex known to regulate virus replication, translation, and stability of the genome, and the IRES regulates virus RNA translation. For positive-strand RNA-containing viruses, such as members of the flaviviruses or enteroviruses, the genomic RNA is used for translation, replication, and encapsidation. Only a few regulatory mechanisms which govern the accessibility of genomic RNA templates for translation or replication have been reported. Here, we report the role of human antigen R (HuR) in regulating the fate of CVB3 positive-strand RNA into the replication cycle or translation cycle. We have observed that synthesis of HuR is induced during CVB3 infection, and it suppresses viral replication by displacing PCBP-2 (a positive regulator of virus replication) at the cloverleaf RNA. Silencing of HuR increases viral RNA replication and consequently reduces viral RNA translation in a replication-dependent manner. Furthermore, we have shown that HuR level is upregulated upon CVB3 infection. Moreover, HuR limits virus replication and can coordinate the availability of genomic RNA templates for translation, replication, or encapsidation. Our study highlights the fact that the relative abundance of translation factors and replication factors in the cell decides the outcome of viral infection. IMPORTANCE A positive-strand RNA virus must balance the availability of its genomic template for different viral processes at different stages of its life cycle. A few host proteins are shown to be important to help the virus in switching the usage of a template between these processes. These proteins inhibit translation either by displacing a stimulator of translation or by binding to an alternative site. Both mechanisms lead to ribosome clearance and availability of the genomic strand for replication. We have shown that HuR also helps in maintaining this balance by inhibiting replication and subsequently promoting translation and packaging.


Assuntos
Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Proteína Semelhante a ELAV 1/fisiologia , Enterovirus Humano B/fisiologia , RNA Viral/metabolismo , Regiões 5' não Traduzidas , Animais , Regulação Viral da Expressão Gênica , Inativação Gênica , Células HeLa , Interações entre Hospedeiro e Microrganismos , Humanos , Sítios Internos de Entrada Ribossomal , Estágios do Ciclo de Vida , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Replicação Viral
10.
Cell Cycle ; 20(5-6): 561-574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33629930

RESUMO

We have earlier shown that p53-FL and its translational isoform ∆40p53 are differentially regulated. In this study, we have investigated the cellular effect of ∆40p53 regulation on downstream gene expression, specifically miRNAs. Interestingly, ∆40p53 showed antagonistic regulation of miR-186-5p as compared to either p53 alone or a combination of both the isoforms. We have elucidated the miR-186-5p mediated effect of ∆40p53 in cell proliferation. Upon expression of ∆40p53, we observed a significant decrease in YY1 levels, an established target of miR-186-5p, which is involved in cell proliferation. Further assays with anti-miR-186 established the interdependence of ∆40p53- miR-186-5p-YY1- cell proliferation. The results unravel a new dimension toward the understanding of ∆40p53 functions, which seems to regulate cellular fate independent of p53FL.


Assuntos
Proliferação de Células/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Células HCT116 , Humanos , Luciferases de Vaga-Lume , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fator de Transcrição YY1/antagonistas & inibidores
12.
Cell Microbiol ; 21(10): e13086, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290220

RESUMO

The cellular lipid pool plays a central role in hepatitis C virus (HCV) life cycle, from establishing infection to virus propagation. Here, we show that a liver abundant long noncoding RNA, highly upregulated in liver carcinoma (HULC), is upregulated during HCV infection and manipulates the lipid pool to favour virus life cycle. Interestingly, HULC was found to be crucial for the increase in number of lipid droplets in infected cells. This effect was attributed to the role of HULC in lipid biogenesis. Further, we demonstrated that HULC knockdown decreases the association of HCV-core protein with lipid droplets. This exhibited a direct consequence on the release of HCV particles. The role of HULC in HCV-particle release was further substantiated by additional knockdown and mutation experiments. Additionally, we found that increased level of HULC in HCV-infected cells was a result of Retinoid X Receptor Alpha (RXRA)-mediated transcription, which seemed to be aided by HCV-core protein. Taken together, the results identify a distinct role of long noncoding RNA HULC in lipid dynamics during HCV infection, which provides new insights into the complex process of HCV propagation and pathogenesis.


Assuntos
Hepacivirus/fisiologia , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Fígado/virologia , RNA Longo não Codificante/metabolismo , Proteínas do Core Viral/metabolismo , Vírion/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Humanos , Gotículas Lipídicas/virologia , Metabolismo dos Lipídeos/genética , Fígado/patologia , RNA Longo não Codificante/genética , Receptor X Retinoide alfa/metabolismo , Proteínas do Core Viral/genética
13.
Biophys J ; 116(7): 1328-1339, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30879645

RESUMO

Morphology of the nucleus is an important regulator of gene expression. Nuclear morphology is in turn a function of the forces acting on it and the mechanical properties of the nuclear envelope. Here, we present a two-parameter, nondimensional mechanical model of the nucleus that reveals a relationship among nuclear shape parameters, such as projected area, surface area, and volume. Our model fits the morphology of individual nuclei and predicts the ratio between forces and modulus in each nucleus. We analyzed the changes in nuclear morphology of liver cells due to hepatitis C virus (HCV) infection using this model. The model predicted a decrease in the elastic modulus of the nuclear envelope and an increase in the pre-tension in cortical actin as the causes for the change in nuclear morphology. These predictions were validated biomechanically by showing that liver cells expressing HCV proteins possessed enhanced cellular stiffness and reduced nuclear stiffness. Concomitantly, cells expressing HCV proteins showed downregulation of lamin-A,C and upregulation of ß-actin, corroborating the predictions of the model. Our modeling assumptions are broadly applicable to adherent, monolayer cell cultures, making the model amenable to investigate changes in nuclear mechanics due to other stimuli by merely measuring nuclear morphology. Toward this, we present two techniques, graphical and numerical, to use our model for predicting physical changes in the nucleus.


Assuntos
Módulo de Elasticidade , Hepacivirus/fisiologia , Modelos Teóricos , Membrana Nuclear/química , Replicação Viral , Actinas/química , Actinas/metabolismo , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Membrana Nuclear/virologia
14.
Virus Res ; 258: 1-8, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30253192

RESUMO

Cellular miRNAs influence Hepatitis C virus (HCV) infection in multiple ways. In this study, we demonstrate that miR-125b-5p is upregulated in HCV infected patient serum samples as well as in HCV infected liver carcinoma cells and is involved in translational regulation of one of its predicted targets, Human antigen R (HuR). We used miRNA mimics and antagomiRs to confirm that HuR is a bonafide miR-125b target. Previously, we have shown that HuR is a positive regulator of HCV replication, whereas we noticed that miR-125b is a negative regulator of HCV infection. As a connecting link between these two observations, we showed that knockdown of miR-125b-5p increased HuR protein levels and rescued HCV replication when the availability of HuR in the cytoplasm was compromised using siRNAs against HuR or an inhibitor of HuR export to the cytoplasm. Overall, the study sheds light on the ability of host cell to use a miRNA as a tool to control virus propagation.


Assuntos
Proteína Semelhante a ELAV 1/genética , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , RNA Mensageiro/genética , Replicação Viral , Adulto , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/metabolismo , Exossomos/genética , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Regulação para Cima
15.
IUBMB Life ; 70(1): 41-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29281185

RESUMO

Hepatitis C virus (HCV) has infected over 170 million people world-wide. This infection causes severe liver damage that can progress to hepatocellular carcinoma leading to death of the infected patients. Development of a cell culture model system for the study of HCV infection in the recent past has helped the researchers world-wide to understand the biology of this virus. Studies over the past decade have revealed the tricks played by the virus to sustain itself, for as long as 40 years, in the host setup without being eliminated by the immune system. Today we understand that the host organelles and different cellular proteins are affected during HCV infection. This cytoplasmic virus has all the cellular organelles at its disposal to successfully replicate, from ribosomes and intracellular membranous structures to the nucleus. It modulates these organelles at both the structural and the functional levels. The vast knowledge about the viral genome and viral proteins has also helped in the development of drugs against the virus. Despite the achieved success rate to cure the infected patients, we struggle to eliminate the cases of recurrence and the non-responders. Such cases might emerge owing to the property of the viral genome to accumulate mutations during its succeeding replication cycles which favours its survival. The current situation calls an urgent need for alternate therapeutic strategies to counter this major problem of human health. © 2017 IUBMB Life, 70(1):41-49, 2018.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/patogenicidade , Hepatite C Crônica/virologia , Hepatócitos/virologia , Evasão da Resposta Imune , Neoplasias Hepáticas/virologia , Antivirais/uso terapêutico , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/prevenção & controle , Núcleo Celular/imunologia , Núcleo Celular/virologia , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Regulação da Expressão Gênica , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Hepatócitos/imunologia , Humanos , Gotículas Lipídicas/imunologia , Gotículas Lipídicas/virologia , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/imunologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/prevenção & controle , RNA Viral/biossíntese , RNA Viral/genética , Ribossomos/imunologia , Ribossomos/virologia , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral/efeitos dos fármacos
16.
Antiviral Res ; 150: 47-59, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29224736

RESUMO

Hepatitis C virus (HCV) infection causes chronic liver disease, which often leads to hepatocellular carcinoma. Earlier, we have demonstrated anti-HCV property of the methanolic extract of Phyllanthus amarus, an age-old folk-medicine against viral hepatitis. Here, we report identification of a principal bioactive component 'corilagin', which showed significant inhibition of the HCV key enzymes, NS3 protease and NS5B RNA-dependent-RNA-polymerase. This pure compound could effectively inhibit viral replication in the infectious cell culture system, displayed strong antioxidant activity by blocking HCV induced generation of reactive oxygen species and suppressed up-regulation of NOX4 and TGF-ß mRNA levels. Oral administration of corilagin in BALB/c mice demonstrated its better tolerability and systemic bioavailability. More importantly, corilagin could restrict serum HCV RNA levels, decrease collagen deposition and hepatic cell denaturation in HCV infected chimeric mice harbouring human hepatocytes. Taken together, results provide a basis towards developing a pure natural drug as an alternate therapeutic strategy for restricting viral replication and prevent liver damage towards better management of HCV induced pathogenesis.


Assuntos
Glucosídeos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Taninos Hidrolisáveis/farmacologia , Fígado/metabolismo , Fígado/virologia , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Glucosídeos/isolamento & purificação , Hepatite C/complicações , Hepatite C/patologia , Humanos , Taninos Hidrolisáveis/isolamento & purificação , Fígado/efeitos dos fármacos , Cirrose Hepática , Camundongos , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Nucleic Acids Res ; 45(17): 10206-10217, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973454

RESUMO

p53 and its translational isoform Δ40p53 are involved in many important cellular functions like cell cycle, cell proliferation, differentiation and metabolism. Expression of both the isoforms can be regulated at different steps. In this study, we explored the role of 3'UTR in regulating the expression of these two translational isoforms. We report that the trans acting factor, Polypyrimidine Tract Binding protein (PTB), also interacts specifically with 3'UTR of p53 mRNA and positively regulates expression of p53 isoforms. Our results suggest that there is interplay between miRNAs and PTB at the 3'UTR under normal and stress conditions like DNA damage. Interestingly, PTB showed some overlapping binding regions in the p53 3'UTR with miR-1285. In fact, knockdown of miR-1285 as well as expression of p53 3'UTR with mutated miR-1285 binding sites resulted in enhanced association of PTB with the 3'UTR, which provides mechanistic insights of this interplay. Taken together, the results provide a plausible molecular basis of how the interplay between miRNAs and the PTB protein at the 3'UTR can play pivotal role in fine tuning the expression of the two p53 isoforms.


Assuntos
Regiões 3' não Traduzidas/genética , Genes p53 , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Células A549 , Sítios de Ligação , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Imunoprecipitação , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética
18.
Nucleic Acids Res ; 45(15): 9068-9084, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28633417

RESUMO

The 5' UTR of Coxsackievirus B3 (CVB3) contains internal ribosome entry site (IRES), which allows cap-independent translation of the viral RNA and a 5'-terminal cloverleaf structure that regulates viral replication, translation and stability. Here, we demonstrate that host protein PSF (PTB associated splicing factor) interacts with the cloverleaf RNA as well as the IRES element. PSF was found to be an important IRES trans acting factor (ITAF) for efficient translation of CVB3 RNA. Interestingly, cytoplasmic abundance of PSF protein increased during CVB3 infection and this is regulated by phosphorylation status at two different amino acid positions. Further, PSF protein was up-regulated in CVB3 infection. The expression of CVB3-2A protease alone could also induce increased PSF protein levels. Furthermore, we observed the presence of an IRES element in the 5'UTR of PSF mRNA, which is activated during CVB3 infection and might contribute to the elevated levels of PSF. It appears that PSF IRES is also positively regulated by PTB, which is known to regulate CVB3 IRES. Taken together, the results suggest for the first time a novel mechanism of regulations of ITAFs during viral infection, where an ITAF undergoes IRES mediated translation, sustaining its protein levels under condition of translation shut-off.


Assuntos
Enterovirus Humano B/genética , Interações Hospedeiro-Patógeno , Fator de Processamento Associado a PTB/genética , Biossíntese de Proteínas , RNA Viral/genética , Ribossomos/genética , Regiões 5' não Traduzidas , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Enterovirus Humano B/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , Fator de Processamento Associado a PTB/antagonistas & inibidores , Fator de Processamento Associado a PTB/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribossomos/metabolismo , Transdução de Sinais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
19.
Sci Rep ; 7(1): 3965, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638096

RESUMO

Hepatitis C virus (HCV) infection is a major cause of chronic liver diseases that often requires liver transplantation. The standard therapies are limited by severe side effects, resistance development, high expense and in a substantial proportion of cases, fail to clear the infection which bespeak the need for development of well-tolerated antivirals. Since most of the drug development strategies target the replication stage of viral lifecycle, the identification of entry inhibitors might be crucial especially in case of liver-transplant recipients. In the present study we have evaluated fruits which are known for their hepatoprotective effects in order to screen for entry inhibitors. We report the identification of a flavonoid, rutin, isolated from Prunus domestica as a new HCV entry inhibitor. Characterization and confirmation of the chemical structure was done by LC-ESI-MS, NMR and IR spectral analyses. Rutin significantly inhibited HCV-LP binding to hepatoma cells and inhibited cell-culture derived HCV (HCVcc) entry into hepatoma cells. Importantly, rutin was found to be non-toxic to hepatoma cells. Furthermore, rutin inhibits the early entry stage of HCV lifecycle possibly by directly acting on the viral particle. In conclusion, rutin is a promising candidate for development of anti-HCV therapeutics in the management of HCV infection.


Assuntos
Antivirais/isolamento & purificação , Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Hepatite C/prevenção & controle , Prunus domestica/química , Rutina/isolamento & purificação , Internalização do Vírus , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Rutina/química , Rutina/farmacologia , Vírion
20.
Oncotarget ; 8(25): 40469-40485, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28465487

RESUMO

The diffusely infiltrative nature of glioblastoma (GBM) makes them highly recurrent. IGF2 mRNA-binding protein 3 (IMP3), a GBM upregulated RNA binding protein, promotes glioma cell migration. An integrative bioinformatics analysis identified p65 (RELA), a subunit of NF-κB heterodimer as a target and an important mediator of IMP3 promoted glioma cell migration. IMP3 increased p65 protein levels without any change in p65 transcript levels, but promoted its polysome association. RIP-PCR demonstrated the binding of IMP3 to p65 transcript. UV crosslinking experiments with in vitro transcribed RNA confirmed the specific and direct binding of IMP3 to sites on p65 3'UTR. Further, IMP3 induced luciferase activity from p65 3'UTR reporter carrying wild type sites but not mutated sites. Exogenous overexpression of p65 from a 3'UTR-less construct rescued the reduced migration of glioma cells in IMP3 silenced condition. In addition, IMP3 silencing inhibited glioma stem-like cell maintenance and migration. The exogenous overexpression of 3'UTR-less p65 significantly alleviated the inhibition of neurosphere formation observed in IMP3 silenced glioma stem-like cells. Further, we show that IMP3 is transcriptionally activated by NF-κB pathway indicating the presence of a positive feedback loop between IMP3 and p65. This study establishes p65 as a novel target of IMP3 in increasing glioma cell migration and underscores the significance of IMP3-p65 feedback loop for therapeutic targeting in GBM.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Glioblastoma/patologia , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição RelA/metabolismo , Regiões 3' não Traduzidas/genética , Movimento Celular/genética , Células HCT116 , Células HEK293 , Humanos , Proteínas de Ligação a RNA/genética , Esferoides Celulares , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/genética , Ativação Transcricional , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA