RESUMO
This study investigated the effects of halibut oil cream, containing omega-3 fatty acids, vitamins A and D, and hydroxyproline, on burn wound healing in rats. Acute dermal toxicity tests confirmed its nontoxicity. Wistar rats were divided into five groups: a control, a positive control treated with silver sulfadiazine 1% (SSD), and three groups treated with 3%, 9%, and 27% halibut oil cream Formulation (HBOF). The SSD and HBOF groups showed significant healing improvements compared to the control. Histopathological analysis indicated increased collagen production in the HBOF groups, suggesting halibut oil cream's potential as a topical treatment for burn wounds.
RESUMO
The proline residue in a protein sequence generates constraints to its secondary structure as the associated torsion angles become a part of the heterocyclic ring. It becomes more significant when two consecutive proline residues link via amide linkage and produce additional configurational constraint to a protein's folding and stability. In the current manuscript we have illustrated conformation preference of a novel dipeptide, (R)-tert-butyl 2-((S)-2-(methoxycarbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate. The dipeptide crystallized in the orthorhombic crystalline state and produced rod-shaped macroscopic material. The analysis of the crystal coordinates showed dihedral angles (φ, ψ) of the interlinked amide groups as (+72°, -147°) and the dihedral angles (φ, ψ) produced with the next carbonyl were (-68°, +151°), indicating polyglycine II (PGII) and polyproline II (PPII)-like helix states at the N- and C-terminals, respectively. These two states, PGII and PPII, are mirror image configurations and are expected to produce similar vibration bands from the associated carbonyl groups. However, the unique atomic arrangement in the molecule produces three carbonyl groups and one of them was very specific, being part of the main peptide linkage that connects both the pyrrolidine rings. The carbonyl group in the peptide bond exhibited a Raman vibration frequency at â¼1642 cm-1 and is considered a signatory Raman marker band for the peptide bond linking two heterochiral proline residues. The carbonyl group (t-Boc) at the N-terminal of the peptide showed a characteristic vibration at â¼1685 cm-1 and the C-terminal carbonyl group as a part of the ester showed a vibration signature at a significantly high frequency (1746 cm-1). Conformation analyses performed with density functional theory (DFT) calculations depicted that the dipeptide was stabilized in vacuum with dihedral angles (+72°, -154°) and (-72°, +151°) at the N- and C-terminals, respectively. Molecular dynamics (MD) simulation also showed that the peptide conformation having dihedral angles around (+75°, -150°) and (-75°, +150°) at the N- and C-terminals, respectively, was reasonably stable in water. Due to unique absence of the amide N-H, the peptide was ineffective in forming any intramolecular hydrogen bonding. MD investigation, however, revealed an intermolecular hydrogen bonding interaction with the water molecules, leading to its stability in aqueous solution. Metadynamics simulation analysis of the dipeptide in water also supported the PGII-PPII-like conformation at the N- and C-terminals, respectively, as the energetically stable conformation among the other possible combinations of conformations. The possible electronic transitions along with the HOMO-LUMO analysis further depicted the stability of the dipeptide in water and their possible absorption pattern. Time-dependent density functional theory (TDDFT) analysis showed strong negative rotatory strength of the dipeptide around 210 nm in water and acetonitrile, and it could be the source of experimentally observed high-amplitude negative absorption in the circular dichroism (CD) spectra around 200-203 nm. The very weak positive band (signature) in the region at â¼228 nm in CD spectra could also be correlated to the positive rotatory strength at 228 nm observed in ECD. To test the effect of such a dipeptide on a living cell, an MTT assay was performed and the result indicated no cytotoxic effect toward human hepatocellular carcinoma Hep G2 cancer cell lines.
Assuntos
Dipeptídeos/química , Prolina/química , Teoria Quântica , Conformação Proteica , Análise Espectral RamanRESUMO
A novel family of betulinic acid analogues, carrying a triazole unit at C-3 attached through a linker, was synthesized by the application of azide-alkyne "Click reaction". These were screened for their anticancer activity against different cancer cells and normal human PBMC by MTT assay. Compound 2c [(3S)-3-{2-(4-(hydroxymethyl-1H-1,2,3-triazol-1-yl)acetyloxy}-lup-20(29)-en-28-oic acid] was found as the most potent inhibitor of cell line HT-29 with IC50 value 14.9 µM. Its role as an inducer of apoptosis was investigated in this cell line by Annexin-V/PI binding assay and by following its capability for ROS generation, depolarization of mitochondrial transmembrane potential, activation of caspases, PARP cleavage, nuclear degradation and expression of pro- and anti-apoptotic proteins. It exhibited much higher cytotoxicity than the standard drug 5-fluorouracil but showed negligible cytotoxicity towards normal PBMC. Elevated level of ROS generation, activation of caspase 3 and caspase 9, DNA fragmentation, higher expression of Bax and Bad, lower expression of Bcl2 and Bcl-xl, and increased level of Bax/Bcl-xl ratio identified 2c as a promising inducer of apoptosis that follows a mitochondria dependent pathway. Bio-physical studies indicate that compound 2c acts as a minor groove binder to the DNA.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Estrutura Molecular , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Ácido BetulínicoRESUMO
A new family of andrographolide analogues were synthesized and screened in vitro against kidney (HEK-293) and breast (MCF-7) cancer cells. The anti-cancer effects of the active analogues (2b, 2c and 4c) were determined by multiple cell based assays such as MTT, immunostaining, FACS, western blotting and transcriptional inhibition of NF-κB activity. Importantly, these compounds were found to possess higher anti-cancer potency than andrographolide and low toxicity to normal (VERO and MCF-10A) cells. Increased level of Bax/Bcl-xL ratio, caspase 3, and sub G1 population, higher expression level of tumor suppressor protein p53 and lower expression level of NF-κB suggested potent apoptotic property of the active analogues. Data revealed that the andrographolide derivative-mediated cell death in cancer cells was p53 dependent.