Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Neuro Oncol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093695

RESUMO

BACKGROUND: Pituitary neuroendocrine tumors, PitNETs, are often aggressive and precipitate in distant metastases that are refractory to current therapies. However, the molecular mechanism in PitNETs' aggressiveness is not well understood. Developmental pluripotency-associated 4 (DPPA4) is known as a stem cell regulatory gene and overexpressed in certain cancers, but its function in the context of PitNETs' aggressiveness is not known. METHODS: We employed both rat and human models of PitNETs. In the rat pituitary tumor model (RPT), we used prenatal-alcohol-exposed (PAE) female Fischer rats which developed aggressive PitNETs following estrogen treatment, while in the human pituitary tumor (HPT) model, we used aggressively proliferative cells from pituitary tumors of patients undergone surgery. Various molecular, cellular, and epigenetic techniques were used to determine the role of DPPA4 in PitNETs' aggressiveness. RESULTS: We show that DPPA4 is overexpressed in association with increased cell stemness factors in aggressive PitNETs of PAE rats and of human patients. Gene-editing experiments demonstrate that DPPA4 increases the expression of cell stemness and tumor aggressiveness genes and promotes proliferation, colonization, migration, and tumorigenic potential of PitNET cells. ChIP assays and receptor antagonism studies reveal that DPPA4 binds to canonical WINTs promoters and increases directly or indirectly the Wnt/ß-catenin control of cell stemness, tumor growth, and aggressiveness of PitNETs. Epigenetic studies show involvement of histone methyltransferase in alcohol activation of DPPA4. CONCLUSIONS: These findings support a role of DPPA4 in tumor stemness and aggressiveness and provide a preclinical rationale for modulating this stemness regulator for the treatment of PitNETs.

2.
PLoS One ; 19(1): e0295522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166085

RESUMO

Influenza viral infection is a seasonal infection which causes widespread acute respiratory issues among humans globally. This virus changes its surface receptor composition to escape the recognition process by the host's immune cells. Therefore, the present study focussed to identify some other important viral proteins which have a significant role in establishment of infection and having apparent conserved structural composition. This could facilitate the permanent vaccine development process or help in designing a drug against IAV (influenza A virus) infection which will eliminate the seasonal flu shot vaccination process. The NS1 (Non-structural protein 1) protein of IAV maintains a conserved structural motif. Earlier studies have shown its significant role in infection establishment. However, the mechanism by which viruses escape the host's ND10 antiviral action remains elusive. The present study clearly showed that IAV infection and NS1 transfection in A549 cells degraded the main component of the ND10 anti-viral complex, PML and therefore, inhibited the formation of Daxx-sp100-p53-PML complex (ND10) at the mid phase of infection/transfection. PML degradation activated the stress axis which increased cellular ROS (reactive oxygen species) levels as well as mitochondrial dysfunction. Additionally, IAV/NS1 increased cellular stress and p53 accumulation at the late phase of infection. These collectively activated apoptotic pathway in the host cells. Along with the inactivation of several interferon proteins, IAV was found to decrease p-IKKε. A549 cells transfected with pcDNA3.1-NS1 showed a similar effect in the interferon axis and IKKε. Moreover, NS1 induced the disintegration of the host's ND10 complex through the changes in the SUMOylation pattern of the PML nuclear body. These findings suggest the possible mechanism of how NS1 helps IAV to establish infection in the host cells. However, it demands further detailed study before targeting NS1 to develop permanent vaccines or novel drugs against IAV in future.


Assuntos
Vírus da Influenza A , Humanos , Quinase I-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Corpos Nucleares da Leucemia Promielocítica , Proteínas não Estruturais Virais/metabolismo , Interferons/metabolismo , Replicação Viral , Interações Hospedeiro-Patógeno
3.
Mol Ther Nucleic Acids ; 32: 203-228, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37078062

RESUMO

Phosphorodiamidate morpholino oligonucleotide (PMO)-based antisense reagents cannot enter cells without the help of a delivery technique, which limits their clinical applications. To overcome this problem, self-transfecting guanidinium-linked morpholino (GMO)-PMO or PMO-GMO chimeras have been explored as antisense agents. GMO facilitates cellular internalization and participates in Watson-Crick base pairing. Targeting NANOG in MCF7 cells resulted in decline of the whole epithelial to mesenchymal transition (EMT) and stemness pathway, evident through its phenotypic manifestations, all of which were promulgated in combination with Taxol due to downregulation of MDR1 and ABCG2. GMO-PMO-mediated knockdown of no tail gene resulted in desired phenotypes in zebrafish even upon delivery after 16-cell stages. In BALB/c mice, 4T1 allografts were found to regress via intra-tumoral administration of NANOG GMO-PMO antisense oligonucleotides (ASOs), which was associated with occurrence of necrotic regions. GMO-PMO-mediated tumor regression restored histopathological damage in liver, kidney, and spleen caused by 4T1 mammary carcinoma. Serum parameters of systemic toxicity indicated that GMO-PMO chimeras are safe. To the best of our knowledge, self-transfecting antisense reagent is the first report since the discovery of guanidinium-linked DNA (DNG), which could be useful as a combination cancer therapy and, in principle, can render inhibition of any target gene without using any delivery vehicle.

4.
Bioorg Med Chem Lett ; 76: 129017, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209968

RESUMO

Despite the enormous potential of siRNAs to transcriptionally downregulate disease causing proteins in many genetic diseases, efficient delivery and endosomal escape are the two bottlenecks that have resulted in only a handful of FDA approved drugs. In this report, we have successfully delivered siRNA against Nanog with the help of pentafluorobenzyl modified Internal Oligo-guanidinium transporter (IGT) that has previously shown promising results in peptide and antisense morpholino delivery. Nanog downregulation in prostate cancer cell line DU145 in serum containing media led to suppression of associated proteins such as KLF4, FAK and cMyc and also enhanced the chemosensitivity of Epirubicin, an anthracycline based drug, in DU145 cells by associated MDR-1 downregulation in vitro. These results show that IGT is a promising candidate for siRNA delivery and its conjugation with stable siRNAs could enhance the chemotherapeutic efficiency of siRNAs alone and in combination with small molecule-based drugs.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Epirubicina , Proteína Homeobox Nanog , Proteínas de Transporte de Cátions Orgânicos , Neoplasias da Próstata , RNA Interferente Pequeno , Humanos , Masculino , Linhagem Celular Tumoral , Epirubicina/farmacologia , Guanidina/metabolismo , Morfolinos , Proteína Homeobox Nanog/genética , Peptídeos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , RNA Interferente Pequeno/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética
5.
Bioconjug Chem ; 33(5): 907-917, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35486710

RESUMO

Cell-penetrating peptides (CPPs) are structurally diverse sophisticated tools endowed with high arginine content, amphipathicity, and well-adopted suitable secondary structures. Despite its capability of breaching the lipid barriers, CPP has major limitations such as in vivo metabolic instability, poor bioavailability, and reduced endosomal escape tendency, which are yet to be improved. In this context, we first have introduced a new class of cellular transporter having a guanidinium-functionalized δ-azaproline (δ-azp)-containing peptide where the δ-azp structurally resembles the "proline" amino acid having an additional "N" at the δ-position. This non-natural peptidic backbone was found to impart proteolytic stability, as reported earlier by our group. Herein, we report the synthesis of a flexible azaproline-tetraguanidinium transporter named FAT along with a revised scalable methodology for δ-azp compared to our previously reported procedure. FAT shows a random-coil-like structure as determined by CD spectroscopy, and is hence structurally different from the polyproline PPII helix. Direct translocation is predicted to be the possible mode of the cellular entrance of FAT into CHO cells when the "Bodipy" fluorophore is covalently attached as the cargo. Simultaneously, two other macromolecular therapeutics, e.g., proapoptotic domain peptide (PAD, a 14-mer peptide) and programmed death ligand 1 (PDL1) morpholino (a 25-mer antisense oligo), were successfully conjugated with FAT and delivered into human carcinoma cells, and their efficacy was analyzed by MTT assay and western blot technique, respectively. Having obtained promising results in internalizing different types of cargos, FAT could be envisaged as a potential drug delivery agent as an alternative to natural CPPs for future application.


Assuntos
Carcinoma , Peptídeos Penetradores de Células , Animais , Antígeno B7-H1 , Peptídeos Penetradores de Células/química , Cricetinae , Cricetulus , Guanidina , Humanos , Morfolinos
6.
Chem Biodivers ; 19(5): e202100823, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35298074

RESUMO

Cananginones, a family of linear acetogenins found as secondary metabolites in the plant kingdom, show cytotoxicity against several types of cancer cells. We aimed to investigate the efficacy of cananginone and its mechanism as an anti-cancer agent. Our initial screening of Cananginone against HepG2, PC3, A549, and MCF7 cells showed anti-cancer activities and is more potent against MCF7 cells, consistent with the previous report. Next, cell-based assays have revealed that cananginone abrogates cancer stem cell renewal as well as Epithelial-Mesenchymal Transition (EMT) and increased the ROS level beyond the threshold level thus reducing the viability of cancer cells. In the connection of Hh-Gli to EMT, our study indicated that cananginone inhibits Gli1 in a non-canonical pathway. Presumably, this is the first report on the inhibitory activity of cananginone in the Hh pathway and is different from Hh-antagonists cyclopamine and GANT 61 considering the mechanism.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Proteínas Hedgehog/metabolismo , Humanos , Proteína GLI1 em Dedos de Zinco/metabolismo
7.
Bioconjug Chem ; 31(10): 2367-2382, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32986398

RESUMO

A nontoxic delivery vehicle is essential for the therapeutic applications of antisense phosphorodiamidate morpholino oligonucleotides (PMOs). Though guanidinium-rich or arginine-rich cellular transporter conjugated Vivo-PMO or PPMO has been developed for in vivo application, however, either their toxicity or stability has become an issue. Previously, we reported nonpeptidic internal guanidinium transporter (IGT) mediated delivery of PMO for gene silencing and got encouraging results. In this paper, we report the synthesis of IGT using a Hg-free method for scale up and N-terminal modification of IGT with a suitable hydrophobic or lipophilic group to improve the cell permeability, endosomal escape, and mitochondrial localization and to reduce toxicity in the MTT assay. For the delivery of PMO, IGT-PMO conjugate was synthesized to target NANOG in cells, a transcription factor required for cancer stem cell proliferation and embryonic development and is involved in many cancers. Our data shows IGT-PMO-facilitated NANOG inhibition, and thereby the prevention of EpCAM-N-Cadherin-Vimentin axis mediated epithelial to mesenchymal transition (EMT) in MCF-7 cells. Moreover, unlike taxol, NANOG inhibition influences the expression of stemness factor c-Myc, Hh-Gli signaling proteins, other cancer related factors, and their respective phenotypes in cancer cells. To the best of our knowledge, this is the first report to illustrate that the IGT-PMO-mediated NANOG inhibition increases the therapeutic potential of taxol and induces G0-G1 arrest in cancer cells to prevent cancer progression. However, it warrants further investigation in other cancer cells and preclinical platforms.


Assuntos
Antineoplásicos/administração & dosagem , Morfolinos/administração & dosagem , Proteína Homeobox Nanog/antagonistas & inibidores , Paclitaxel/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Portadores de Fármacos/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Morfolinos/farmacocinética , Morfolinos/farmacologia , Proteína Homeobox Nanog/genética , Paclitaxel/farmacocinética , Paclitaxel/farmacologia
8.
Free Radic Res ; 54(7): 477-496, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32842814

RESUMO

Smokeless tobacco (SLT) or chewing tobacco has been a highly addictive practice in India across ages, posing major threat to the systemic health and possibly neurodegeneration. Earlier studies showed components of SLT could be harmful to neuronal health. However, mechanism of SLT in neurodegeneration remained unexplored. This study investigated the detrimental role of SLT on differentiated neuronal cell lines, PC12 and SH-SY5Y by using graded doses of water soluble lyophilised SLT. Reduced cell viability, compromised mitochondrial structure and functions were observed when neuronal cell lines were treated with SLT (6 mg/mL) for 24 h. There was reduction of oxidative phosphorylation and aerobic glycolysis as determined by diminution of ATP production (2.5X) and basal respiration (1.9X). Mitochondrial membrane potential was dropped by 3.5 times. Bid, a pro-apoptotic Bcl-2 family protein, has imperative role in regulating mitochondrial outer membrane permeabilization and subsequent cytochrome c release leading to apoptosis. This article for the first time indicated the involvement of Bid in SLT mediated neurotoxicity and possibly neurodegeneration. SLT treatment enhanced expression of cleaved-Bid in time dependent manner. The involvement of Bid was further confirmed by using Bid specific shRNA which reversed the effects of SLT and conferred significant protection from apoptosis up to 72 h. Thus, our results clearly indicated that SLT induced neuronal cell death occurred via production of ROS, alteration of mitochondrial morphology, membrane potential and oxidative phosphorylation, inactivation of survival pathway and activation of apoptotic markers mediated by Bid. Therefore, Bid could be a potential future therapeutic target for SLT induced neurodegeneration.


Assuntos
Neurônios/patologia , Tabaco sem Fumaça/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Dano ao DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa , Células PC12 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Langmuir ; 36(22): 6178-6187, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32418427

RESUMO

Biocompatible, nonconventional, multifunctional, purely aliphatic, light-emitting terpolymers, i.e., acrylonitrile-co-3-(N-isopropylacrylamido)propanenitrile-co-N-isopropylacrylamide (AN-co-NIPAMPN-co-NIPA, 1) and acrylonitrile-co-3-(N-hydroxymethylacrylamido)propanenitrile-co-N-hydroxymethylacrylamide (AN-co-NHMAMPN-co-NHMA, 2), were designed and synthesized via N-H-functionalized C-C + N-C-coupled in situ protrusions/grafting of fluorophore monomers, i.e., NIPAMPN and NHMAMPN, by solution polymerization of two highly hydrophobic nonemissive monomers in water. These scalable and reusable 1 and 2 were suitable for high-performance three-in-one applications, such as Fe(III) sensors, imaging of Madin-Darby canine kidney (MDCK) and human lung cancer (A549) cells, and security inks. The structures of 1 and 2, N-C-coupled in situ attachments/grafting of third fluorophore monomers, grafting events, and aggregation-enhanced emissions (AEEs), were analyzed by 1H and 13C NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric (TG) analysis, high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), fluorescence imaging, and fluorescence lifetime. The geometries, electronic structures, and absorption/emission properties of 1 and 2 at optimized compositions were examined by density functional theory (DFT), time-dependent DFT (TDDFT), and natural transition orbital (NTO) analyses. The limits of detection were 3.20 × 10-7 and 1.37 × 10-7 M for 1 and 2, respectively. The excellent biocompatibility of 1 and 2 was confirmed by >95% retention of MDCK and A549 cell morphologies.

10.
Free Radic Res ; 53(9-10): 944-967, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31576765

RESUMO

The major drawback of anticancer therapy is the development of resistance against drugs and radiation at the later phase of treatment which may lead to recurrences of the disease. Therefore, strategy was taken to enhance radiation sensitivity of lung (A549) and liver (HepG2) carcinoma cells by treatment with ferulic acid (FA) prior to irradiation. FA pre-treatment initially decreased reactive oxygen species (ROS) level in carcinoma cells which induced reductive stress and cytostasis. To overcome this stress, cellular mechanism increased the Keap1 level to down-regulate nuclear localisation of Nrf2 and its dependent antioxidant system. The antioxidant system reached the lowest level after 3 and 6 h of FA treatment in A549 and HepG2 cells respectively. As endogenous ROS were still being generated at same rate, ROS level was clearly higher than control which changed the reductive stress to oxidative stress. Exposure to γ-radiation in this condition further increased ROS level and caused radio-sensitisation of carcinoma cells. Combination of irradiation (IR) and FA activated mitochondrial apoptotic pathway and concomitantly inhibited the cell cycle progression and survival pathway over the IR group. Moreover, the combination treatment showed significant tumour regression, caspase 3 activation and nuclear fragmentation in tumour tissue compared to radiation alone. In contrast, FA pre-treatment protected peripheral blood mononuclear cells (PBMC) and normal lung fibroblast WI38 cells from radiation damage. Together, combination treatment offers effective strategy of killing cancer cells and demonstrates its potential for increasing the efficacy of radio-therapy.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Cumáricos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Ácidos Cumáricos/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/patologia , Oxirredução
11.
Sci Rep ; 7(1): 14043, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070894

RESUMO

Failure of treatment for cancer in clinic by radio/chemotherapy is generally attributed to tumour resistance. Therefore, it is important to develop strategies to increase the cytotoxicity of tumour cells by radiation in combination with unique tumour selective cytotoxic agents. We evaluated the potential of ellagic acid (EA) as an enhancer of oxidative stress in cancer cells. HepG2 cells were treated with EA (10 µM) for 12 h prior to exposure of single 7.5 Gy dose of irradiation. Treatment of HepG2 cells with EA and gamma radiation showed increased reactive oxygen species generation, up regulation of p53 protein expression, decreased survival markers level like p-Akt, p-NF-kB and p-STAT3 which were significantly higher after radiation treatment alone. We also found that combination treatment increased G2/M phase cell population, decreased IL-6, COX-2 and TNF-α expression and caused a loss in mitochondrial membrane potential with decreased level of angiogenesis marker MMP-9. Over expression of Bax and activation of caspase 3 indicated the apoptosis of the cells. The results provided a strong unique strategy to kill cancer cells HepG2, using less radiation dose along with effective pro-oxidant dose of EA.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Ácido Elágico/farmacologia , Neoplasias Hepáticas/patologia , Estresse Oxidativo , Radiossensibilizantes/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Ciclo Celular , Proliferação de Células , Raios gama , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Células Tumorais Cultivadas
12.
PLoS One ; 12(6): e0178202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28582426

RESUMO

Gold nanoparticles are predominantly used in diagnostics, therapeutics and biomedical applications. The present study has been designed to synthesize differently capped gold nanoparticles (AuNps) by a simple, one-step, room temperature procedure and to evaluate the potential of these AuNps for biomedical applications. The AuNps are capped with glucose, 2-deoxy-D-glucose (2DG) and citrate using different reducing agents. This is the first report of synthesis of 2DG-AuNp by the simple room temperature method. The synthesized gold nanoparticles are characterized with UV-Visible Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Dynamic light scattering (DLS), and Energy-dispersive X-ray spectroscopy (SEM-EDS). Surface-enhanced Raman scattering (SERS) study of the synthesized AuNps shows increase in Raman signals up to 50 times using 2DG. 3-(4, 5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been performed using all the three differently capped AuNps in different cell lines to assess cytotoxcity if any, of the nanoparticles. The study shows that 2DG-AuNps is a better candidate for theranostic application.


Assuntos
Desoxiglucose/química , Glucose/química , Ouro/química , Nanopartículas Metálicas/química , Nanomedicina Teranóstica/métodos , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/química , Ouro/farmacologia , Células HCT116 , Células HeLa , Células Hep G2 , Humanos , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula
13.
Free Radic Res ; 51(1): 47-63, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28074659

RESUMO

The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.


Assuntos
Ácidos Cumáricos/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Protetores contra Radiação/uso terapêutico , Animais , Compostos de Bifenilo/química , Catalase/metabolismo , Resinas Compostas , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Raios gama , Masculino , Camundongos , Oxirredução , Picratos/química , Plasmídeos/química , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Transdução de Sinais , Superóxido Dismutase/metabolismo , Ativação Transcricional/efeitos dos fármacos
14.
Int J Radiat Biol ; 92(12): 806-818, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27805454

RESUMO

PURPOSE: The spleen is a crucial organ manifesting immune functions. Thus, radiation-induced oxidative challenge is vulnerable for the spleen. Our major objective was to protect the spleen from radiation-induced anomalous situations and to identify the signaling pathways involved. MATERIALS AND METHODS: Swiss albino mice were treated with ferulic acid (FA) once in a day at a dose of 50 mg/kg body weight for 5 consecutive days before exposing them to single dose of 10 Gy irradiation. The ROS generation and MMP change were determined by flow cytometry. The expression of different signaling proteins was investigated by immunoblotting and immunocytochemistry. RESULTS: FA pretreatment significantly prevented radiation-induced oxidative stress by downregulating TBARS formation and by upregulating SOD and catalase activity. FA scavenged ROS, prevented the alteration of MMP and downregulated the expression of stress marker Cdc42 and apoptotic markers p53, p21, Bax and PTEN. Cell cycle analysis showed DNA damage induced arrest of cells at subG0/G1 phase. Moreover, pretreatment with FA augmented Bcl2 expression and also increased the level of p-PI3K. CONCLUSION: FA prevented the activation of apoptotic signaling events in the spleen by interfering with the free radical chain reaction and by scavenging superfluous ROS. This is perhaps the first comprehensive study with a mechanistic viewpoint that FA can protect the spleen from ionizing radiation.


Assuntos
Lesões por Radiação/imunologia , Lesões por Radiação/prevenção & controle , Espécies Reativas de Oxigênio/imunologia , Baço/efeitos da radiação , Esplenopatias/imunologia , Esplenopatias/prevenção & controle , Animais , Ácidos Cumáricos/administração & dosagem , Citocinas/imunologia , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/administração & dosagem , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Estresse Oxidativo/efeitos da radiação , Protetores contra Radiação/administração & dosagem , Resultado do Tratamento , Irradiação Corporal Total/efeitos adversos
15.
Sci Rep ; 5: 18284, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26669667

RESUMO

Smokeless tobacco (SLT) remains a threat amongst a large population across the globe and particularly in India. The oral use of tobacco has been implicated to cause physiological stress leading to extreme toxicological challenge. The study included 47 SLT-users and 44 non-users providing a spectrum of pathophysiological, clinico-biochemical, antioxidant parameters, cell cycle progression study of PBMC and morphological changes of red blood cells (RBC). The expressions of p53, p21, Bax, Bcl-2, IL-6, TNF- α, Cox-2, iNOS were analyzed from thirteen representative SLT-users and twelve non-users. Difference in CRP, random glucose, serum cholesterol, TG, HLDL-C, LDL-C, VLDL-C, neutrophil count, monocyte count, ESR, SOD (PBMC) and TBARS (RBC membrane) were found to be statistically significant (p < 0.05) between the studied groups. The current study confers crucial insight into SLT mediated effects on systemic toxicity and stress. This has challenged the metabolic condition leading to a rise in the inflammatory status, increased apoptosis and RBC membrane damage. The above findings were substantiated with metabolic, clinical and biochemical parameters. This is possibly the first ever in-depth report and remains an invaluable document on the fatal effects of SLT.


Assuntos
Apoptose/efeitos dos fármacos , Eritrócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Tabaco sem Fumaça/efeitos adversos , Adulto , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo-Oxigenase 2/metabolismo , Eritrócitos/patologia , Feminino , Humanos , Índia , Interleucina-6/metabolismo , Leucócitos Mononucleares/patologia , Lipídeos/sangue , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Free Radic Res ; 49(10): 1173-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25994373

RESUMO

Radioprotective action of gossypetin (GTIN) against gamma (γ)-radiation-induced oxidative stress in liver was explored in the present article. Our main aim was to evaluate the protective efficacy of GTIN against radiation-induced alteration of liver in murine system. To evaluate the effect of GTIN, it was orally administered to mice at a dose of 30 mg/kg body weight for three consecutive days prior to γ-radiation at a dose of 5 Gy. Radioprotective efficacy of GTIN were evaluated at physiological, cellular, and molecular level using biochemical analysis, comet assay, flow cytometry, histopathology, immunofluorescence, and immunoblotting techniques. Ionizing radiation was responsible for augmentation of hepatic oxidative stress in terms of lipid peroxidation and depletion of endogenous antioxidant enzymes. Immunoblotting and immunofluorescence studies showed that irradiation enhanced the nuclear translocation of nuclear factor kappa B (NF-κB) level, which leads to hepatic inflammation. To investigate further, we found that radiation induced the activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK)-mediated apoptotic pathway and deactivation of the NF-E2-related factor 2 (Nrf2)-mediated redox signaling pathway, whereas GTIN pretreatment ameliorated these radiation-mediated effects. This is the novel report where GTIN rationally validated the molecular mechanism in terms of the modulation of cellular signaling system' instead of ' This is the novel report where GTIN is rationally validated in molecular terms to establish it as promising radioprotective agents. This might be fruitful especially for nuclear workers and defense personnel assuming the possibility of radiation exposure.


Assuntos
Antioxidantes/uso terapêutico , Flavonoides/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Raios gama/efeitos adversos , Fígado/efeitos dos fármacos , Protetores contra Radiação/uso terapêutico , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Disponibilidade Biológica , Catalase/metabolismo , Quebras de DNA de Cadeia Dupla , Avaliação Pré-Clínica de Medicamentos , Flavonoides/química , Flavonoides/farmacologia , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/efeitos da radiação , Interleucina-6/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Fígado/efeitos da radiação , Fígado/ultraestrutura , Masculino , Camundongos , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/sangue
17.
Indian J Exp Biol ; 52(10): 952-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25345244

RESUMO

In vitro assessment showed that H. rhamnoides (HrLE) extract possessed free radical scavenging activities and can protect gamma (gamma) radiation induced supercoiled DNA damage. For in vivo study, Swiss albino mice were administered with HrLE (30 mg/kg body weight) for 15 consecutive days before exposing them to a single dose of 5 Gy of beta radiation. HrLE significantly prevented the radiation induced genomic DNA damage indicated as a significant reduction in the comet parameters. The lipid peroxidation, liver function enzymes, expression of phosphorylated NFkappaB (p65) and IkappaBalpha increased whereas the endogenous antioxidants diminished upon radiation exposure compared to control. Pretreatment of HrLE extract ameliorated these changes. Based on the present results it can be concluded that H. rhamnoides possess a potential preventive element in planned and accidental nuclear exposures.


Assuntos
Dano ao DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Hippophae/química , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , DNA Super-Helicoidal/química , DNA Super-Helicoidal/efeitos dos fármacos , DNA Super-Helicoidal/efeitos da radiação , Sequestradores de Radicais Livres/química , Raios gama , Fígado/química , Fígado/patologia , Masculino , Camundongos , Extratos Vegetais/química , Folhas de Planta/química
18.
PLoS One ; 9(5): e97599, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24854039

RESUMO

Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/ß and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation.


Assuntos
Ácidos Cumáricos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Estresse Oxidativo/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Análise de Variância , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/administração & dosagem , Ácidos Cumáricos/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Primers do DNA/genética , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Raios gama , Imuno-Histoquímica , Interleucina-6/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos da radiação , Reação em Cadeia da Polimerase , Fator de Necrose Tumoral alfa/sangue
19.
Angew Chem Int Ed Engl ; 52(49): 12833-7, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24127281

RESUMO

Give me five: Time-resolved Fourier-transform IR spectroscopy is used to time-resolve the formation and the reaction dynamics of a fourfold symmetrical nitrido iron(V) complex (light blue C, red Fe, blue N) in liquid solution under physiological and technologically relevant conditions.


Assuntos
Compostos Férricos/química , Espectroscopia de Ressonância Magnética , Processos Fotoquímicos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Comput Chem ; 30(12): 1872-81, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19115280

RESUMO

The high frequency XH (e.g., X = C, Si) stretching modes in small molecules are only slightly perturbed by other vibrational modes present in the system. The isolated frequencies, in these cases, exhibit a linear relationship with the corresponding bond lengths. Here, we study such a bond length-frequency correlation in the case of PH stretching vibrations for molecules in the gas phase as well as for surface-adsorbed species. Although a high degree of linear correlation is found, there is a small dependence on the local coordination around P, leading to significant deviations in some cases. By a careful analysis, we show that such correlations can be used to predict new surface frequencies without computing the Hessian matrix explicitly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA