Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(15): 9673-9683, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39118447

RESUMO

BACKGROUND: The composition of extra virgin olive oil (EVOO) defines its sensory, nutritional, and human health benefits, and distinguishes it as a key component of the Mediterranean diet. Nevertheless, EVOO constituents are susceptible to degradation during processing and storage, which reduces the olive oil's quality and limits its shelf life. The present study investigated the effect of molecular filtration before storage and the effect of cool storage at 4 °C on the stability of 'Kolovi' EVOO, a variety originating from the Greek island of Lesvos, over a 24 month period. RESULTS: Storing EVOO at 4 °C positively affected free acidity, peroxide value, K268, fruity qualities, and concentrations of hydroxytyrosol, tyrosol, ligstroside aglycone, lutein, and squalene, in comparison with the control sample stored at room temperature, particularly after 1 year. Molecular filtration significantly affected the ratio of unsaturated fatty acids to saturated fatty acids (UFAs/SFAs). Optimal preservation of parameters such as acidity value and lutein content was achieved by combining molecular filtration with refrigeration. CONCLUSIONS: The present study recommends storing EVOO in the refrigerator for up to 18 months. Based on the regulatory limits of the quality characteristics of acidity, peroxide value, K232 value and fruity sensory attributes, the shelf-life of the protected geographical indication (PGI) 'Kolovi' EVOO can reach 2 years under cool storage (4 °C) and with molecular filtration before storage. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Armazenamento de Alimentos , Azeite de Oliva , Refrigeração , Azeite de Oliva/química , Humanos , Filtração , Frutas/química , Olea/química , Grécia , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação
2.
Anal Methods ; 16(17): 2684-2692, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38623768

RESUMO

This study presents the development and validation of a comprehensive high-resolution mass spectrometry (HRMS) methodology for the detection of 771 pesticides in olive oil, using liquid chromatography with electrospray ionization, operating in positive and negative mode, and gas chromatography with atmospheric-pressure chemical ionization in positive mode, both coupled to quadrupole-time-of-flight mass spectrometry (LC-(ESI)-/GC-(APCI)-QTOF MS). Special reference is made to the post-acquisition evaluation step, in which all LC/GC-HRMS analytical evidence (i.e. mass accuracy, retention time, isotopic pattern, MS/MS fragmentation) is taken into account in order to successfully identify the compounds. The sample preparation of the method involves a QuEChERS-based protocol, common for both techniques, differentiated only on the reconstitution step, making the method highly applicable in routine analysis. A smart evaluation of method's performance was carried out, with 65 representative analytes comprising the validation set. The method was validated in terms of linearity, accuracy, matrix effect and precision, while the limits of detection and quantification of the method were estimated. Finally, twenty Greek olive oil samples were analysed in both analytical platforms and the findings included the pesticides lambda-cyhalothrin, chlorpyrifos, phosphamidon, pirimiphos-methyl and esprocarb at low ng g-1 level.


Assuntos
Azeite de Oliva , Espectrometria de Massas por Ionização por Electrospray , Azeite de Oliva/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Limite de Detecção , Reprodutibilidade dos Testes , Contaminação de Alimentos/análise
3.
Heliyon ; 9(11): e21311, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954321

RESUMO

The determination of volatile compounds is essential for the chemical characterisation of honey's aroma and its correlation to its sensory profile and botanical origin. The present study describes the development, optimization and validation of a new, simple and reliable method for the determination of volatile compounds in honey using headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (HS-SPME-GC-MS). The optimization of the SPME conditions showed that the ratio of honey: water (2:1) and the incubation temperature (60 °C) are the most critical parameters. Gas chromatography was performed with medium polar Varian CP-Select 624 column and the experimental Retention Index for a number of compounds was determined as an additional identification feature for suspect analysis. The simultaneous use of four internal standards chlorobenzene, benzophenone, 2-pentanol and 4-methyl-2-pentanone and matrix matched calibration enhanced method accuracy achieving recoveries 73-114 % and repeatability ranging between 3.9 and 19 % relative standard deviations. Furthermore, the superiority of the HS-SPME to static head space technique was verified exhibiting four-to nine-fold higher sensitivity. Target and suspect screening were applied to 30 Greek honey samples and 53 volatile compounds belonging to different chemical classes, such as alkanes, aldehydes, ketones, alcohols, and esters were identified with quantified concentrations ranging between 3.1 µg kg-1 (Limonene) up to 20 mg kg-1 (Benzeneacetaldehyde). Among the new findings is the detection of Myrtenol in Greek pine honey and 2,3-butanediol in Greek oak honey. The developed analytical protocol can be a valuable tool in order to chemically characterize honey based on the volatile content.

4.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903279

RESUMO

Oregano is native to the Mediterranean region and it has been reported to contain several phenolic compounds particularly flavonoids that have been related with multiple bioactivities towards certain diseases. Oregano is cultivated in the island of Lemnos where the climate promotes its growth and thus it could be further used in promoting local economy. The aim of the present study was to establish a methodology for the extraction of total phenolic content along with the antioxidant capacity of oregano by using response surface methodology. A Box-Behnken design was applied to optimize the extraction conditions with regard to the extraction time, temperature, and solvent mixture with the use of ultrasound-assisted extraction. For the optimized extracts, identification of the most abundant flavonoids (luteolin, kaempferol, and apigenin) was performed with an analytical HPLC-PDA and UPLC-Q-TOF MS methodology. The predicted optimal conditions of the statistical model were identified, and the predicted values confirmed. The linear factors evaluated, temperature, time, and ethanol concentration, all showed significant effect (p < 0.05), and the regression coefficient (R2) presented a good correlation between predicted and experimental data. Actual values under optimum conditions were 362.1 ± 1.8 and 108.6 ± 0.9 mg/g dry oregano with regard to total phenolic content and antioxidant activity based on 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. Additionally, further antioxidant activities by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (115.2 ± 1.2 mg/g dry oregano), Ferric Reducing Antioxidant Power (FRAP) (13.7 ± 0.8 mg/g dry oregano), and Cupric Reducing Antioxidant Capacity (CUPRAC) (1.2 ± 0.2 mg/g dry oregano) assays were performed for the optimized extract. The extract acquired under the optimum conditions contain an adequate quantity of phenolic compounds that could be used in the production of functional foods by food enrichment procedure.


Assuntos
Antioxidantes , Origanum , Antioxidantes/química , Origanum/química , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Fenóis/química , Flavonoides
5.
Foods ; 11(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327283

RESUMO

Herbal and plant extracts are being applied for a wide range of foods against different types of food-borne pathogens. In the present study, ethanolic and aqueous extracts (2% w/v) from cranberry (Vaccinium macrocarpon) and pomegranate (Punica granatum L.) plants were applied alone or in combination with two essential oils (thyme and oregano in a concentration of 0.150 µg/g) in pork meatballs and their antimicrobial activity was estimated. The extracts exhibited promising results (aqueous and ethanolic extracts of pomegranate and cranberry in a food-compatible concentration of 2% w/v) were applied to raw pork meatball production and their antimicrobial activity was recorded versus Enterobacteriaceae, total mesophilic bacteria, yeasts/molds, Staphylococcus spp., Pseudomonas spp. and lactic acid bacteria (LAB). The outcome demonstrated that meatballs containing aqueous extracts of pomegranate were more resistant to spoilage compared to all the other samples since they were preserved for more days. The chemical profiles of plant extracts were determined through LC-QTOF/MS and the chemical composition of the essential oils applied was determined with the use of GC/MS in order to identify the substances involved in the observed antimicrobial activity. Phenolic acids (quinic acid, chlorogenic acid), monoterpenes (p-cymene, carvacrol, thymol, limonene), organic acids (citric acid) and phenols were the main constituents found in the plant extracts and essential oils applied. These extracts of plant origin could be used as natural preservatives in meat products, even in low concentrations.

6.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209139

RESUMO

Extra virgin olive oil (EVOO) is a key component of the Mediterranean diet, with several health benefits derived from its consumption. Moreover, due to its eminent market position, EVOO has been thoroughly studied over the last several years, aiming at its authentication, but also to reveal the chemical profile inherent to its beneficial properties. In the present work, a comparative study was conducted to assess Greek EVOOs' quality and authentication utilizing different analytical approaches, both targeted and untargeted. 173 monovarietal EVOOs from three emblematic Greek cultivars (Koroneiki, Kolovi and Adramytiani), obtained during the harvesting years of 2018-2020, were analyzed and quantified as per their fatty acids methyl esters (FAMEs) composition via the official method (EEC) No 2568/91, as well as their bioactive content through liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) methodology. In addition to FAMEs analysis, EVOO samples were also analyzed via HRMS-untargeted metabolomics and optical spectroscopy techniques (visible absorption, fluorescence and Raman). The data retrieved from all applied techniques were analyzed with Machine Learning methods for the authentication of the EVOOs' variety. The models' predictive performance was calculated through test samples, while for further evaluation 30 commercially available EVOO samples were also examined in terms of variety. To the best of our knowledge, this is the first study where different techniques from the fields of standard analysis, spectrometry and optical spectroscopy are applied to the same EVOO samples, providing strong insight into EVOOs chemical profile and a comparative evaluation through the different platforms.


Assuntos
Análise de Alimentos , Qualidade dos Alimentos , Azeite de Oliva/química , Azeite de Oliva/normas , Ácidos Graxos/análise , Análise de Alimentos/métodos , Ingredientes de Alimentos/análise , Grécia , Metabolômica/métodos , Análise Espectral
7.
Anal Chim Acta ; 1134: 150-173, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33059861

RESUMO

Extra Virgin Olive Oil (EVOO), the emblematic food of the Mediterranean diet, is recognized for its nutritional value and beneficial health effects. The main authenticity issues associated with EVOO's quality involve the organoleptic properties (EVOO or defective), mislabeling of production type (organic or conventional), variety and geographical origin, and adulteration. Currently, there is an emerging need to characterize EVOOs and evaluate their genuineness. This can be achieved through the development of analytical methodologies applying advanced "omics" technologies and the investigation of EVOOs chemical fingerprints. The objective of this review is to demonstrate the analytical performance of High Resolution Mass Spectrometry (HRMS) in the field of food authenticity assessment, allowing the determination of a wide range of food constituents with exceptional identification capabilities. HRMS-based workflows used for the investigation of critical olive oil authenticity issues are presented and discussed, combined with advanced data processing, comprehensive data mining and chemometric tools. The use of unsupervised classification tools, such as Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), as well as supervised classification techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Partial Least Square Discriminant Analysis (PLS-DA), Orthogonal Projection to Latent Structure-Discriminant Analysis (OPLS-DA), Counter Propagation Artificial Neural Networks (CP-ANNs), Self-Organizing Maps (SOMs) and Random Forest (RF) is summarized. The combination of HRMS methodologies with chemometrics improves the quality and reliability of the conclusions from experimental data (profile or fingerprints), provides valuable information suggesting potential authenticity markers and is widely applied in food authenticity studies.


Assuntos
Azeite de Oliva , Análise Discriminante , Espectrometria de Massas , Azeite de Oliva/análise , Análise de Componente Principal , Reprodutibilidade dos Testes
8.
Foods ; 9(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905742

RESUMO

A new facile and fast method was developed in this study for the determination of pigments (chlorophylls and carotenoids), tocopherols (α-, sum of (ß + γ), and δ), and squalene in olive oil. This method consisted of a dilution of olive oil in 2-propanol, followed by reversed phase-high-pressure liquid chromatography equipped with a diode array detector (RP-HPLC-DAD). Chromatographic separation was performed using a C18 column, while the mobile phase consisted of acetonitrile and methanol using a gradient elution program. The methodology was optimized, validated, and applied to the analysis of 452 samples of Extra Virgin Olive Oil (EVOOs) and Virgin Olive Oil (VOOs) originated from five islands of the Northeastern Aegean Region, in Greece. From the obtained results, it was indicated that the carotenoid, tocopherol, and squalene content was relatively high, while the chlorophyll content was low. Furthermore, the acquired results were studied and compared in order to obtain useful information about the correlation of the concentration levels of these compounds in olive oil to different cultivation and olive oil production parameters. Several parameters were found to play a significant role on the pigment and antioxidant content of olive oil, such as the olive tree variety, geographical origin, fruit maturation stage during harvesting, and addition of water during malaxation, while other parameters such as the altitude of cultivation, the type of farming (organic or conventional), and the type of olive mill did not seem to affect the levels of these compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA