Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 106: 117755, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749343

RESUMO

Translesion synthesis (TLS) is a cellular mechanism through which actively replicating cells recruit specialized, low-fidelity DNA polymerases to damaged DNA to allow for replication past these lesions. REV1 is one of these TLS DNA polymerases that functions primarily as a scaffolding protein to organize the TLS heteroprotein complex and ensure replication occurs in the presence of DNA lesions. The C-Terminal domain of REV1 (REV1-CT) forms many protein-protein interactions (PPIs) with other TLS polymerases, making it essential for TLS function and a promising drug target for anti-cancer drug development. We utilized several lead identification strategies to identify various small molecules capable of disrupting the PPI between REV1-CT and the REV1 Interacting Regions (RIR) present in several other TLS polymerases. These lead compounds were profiled in several in vitro potency and PK assays to identify two scaffolds (1 and 6) as the most promising for further development. Both 1 and 6 synergized with cisplatin in a REV1-dependent fashion and demonstrated promising in vivo PK and toxicity profiles.


Assuntos
Nucleotidiltransferases , Bibliotecas de Moléculas Pequenas , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Animais , Relação Estrutura-Atividade , Ligação Proteica , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Dose-Resposta a Droga , DNA Polimerase Dirigida por DNA/metabolismo , Camundongos , Síntese de DNA Translesão
2.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577015

RESUMO

Translesion synthesis (TLS) is an error-prone DNA damage tolerance mechanism used by actively replicating cells to copy past DNA lesions and extend the primer strand. TLS ensures that cells continue replication in the presence of damaged DNA bases, albeit at the expense of an increased mutation rate. Recent studies have demonstrated a clear role for TLS in rescuing cancer cells treated with first-line genotoxic agents by allowing them to replicate and survive in the presence of chemotherapy-induced DNA lesions. The importance of TLS in both the initial response to chemotherapy and the long-term development of acquired resistance has allowed it to emerge as an interesting target for small molecule drug discovery. Proper TLS function is a complicated process involving a heteroprotein complex that mediates multiple attachment and switching steps through several protein-protein interactions (PPIs). In this review, we briefly describe the importance of TLS in cancer and provide an in-depth analysis of key TLS PPIs, focusing on key structural features at the PPI interface while also exploring the potential druggability of each key PPI.


Assuntos
Proteínas Nucleares , DNA , Reparo do DNA , Replicação do DNA , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica
3.
Mol Ther Oncolytics ; 20: 265-276, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33614910

RESUMO

The glioma-associated family of transcription factors (GLI) have emerged as a promising therapeutic target for a variety of human cancers. In particular, GLI1 plays a central role as a transcriptional regulator for multiple oncogenic signaling pathways, including the hedgehog (Hh) signaling pathway. We undertook a computational screening approach to identify small molecules that directly bind GLI1 for potential development as inhibitors of GLI-mediated transcription. Through these studies, we identified compound 1, which is an 8-hydroxyquinoline, as a high-affinity binder of GLI1. Compound 1 inhibits GLI1-mediated transcriptional activity in several Hh-dependent cellular models, including a primary model of murine medulloblastoma. We also performed a series of computational analyses to define more clearly the mechanism(s) through which 1 inhibits GLI1 function after binding. Our results strongly suggest that binding of 1 to GLI1 does not prevent GLI1/DNA binding nor disrupt the GLI1/DNA complex, but rather, it induces specific conformational changes in the overall complex that prevent proper GLI function. These results highlight the potential of this compound for further development as an anti-cancer agent that targets GLI1.

4.
Expert Opin Investig Drugs ; 30(1): 13-24, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33179552

RESUMO

Introduction: Translesion synthesis (TLS) is a DNA damage tolerance mechanism that replaces the replicative DNA polymerase with a specialized, low-fidelity TLS DNA polymerase that can copy past DNA lesions during active replication. Recent studies have demonstrated a primary role for TLS in replicating past DNA lesions induced by first-line genotoxic agents, resulting in decreased efficacy and acquired chemoresistance. With this in mind, targeting TLS as a combination strategy with first-line genotoxic agents has emerged as a promising approach to develop a new class of anti-cancer adjuvant agents. Areas covered: In this review, we provide a brief background on TLS and its role in cancer. We also discuss the identification and development of inhibitors that target various TLS DNA polymerases or key protein-protein interactions (PPIs) in the TLS machinery. Expert opinion: TLS inhibitors have demonstrated initial promise; however, their continued study is essential to more fully understand the clinical potential of this emerging class of anti-cancer chemotherapeutics. It will be important to determine whether a specific protein involved in TLS is an optimal target. In addition, an expanded understanding of what current genotoxic chemotherapies synergize with TLS inhibitors will guide the clinical strategies for devising combination therapies.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Desenvolvimento de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia
5.
Virol J ; 17(1): 116, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32727587

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the pork industry globally. PRRS is caused by PRRS virus (PRRSV). Currently there are no effective treatments against this swine disease. METHODS: Through artificial intelligence molecular screening, we obtained a set of small molecule compounds predicted to target the scavenger receptor cysteine-rich domain 5 (SRCR5) of CD163, which is a cell surface receptor specific for PRRSV infection. These compounds were screened using a cell-based bimolecular fluorescence complementation (BiFC) assay, and the function of positive hit was further evaluated and validated by PRRSV-infection assay using porcine alveolar macrophages (PAMs). RESULTS: Using the BiFC assay, we identified one compound with previously unverified function, 4-Fluoro-2-methyl-N-[3-(3-morpholin-4-ylsulfonylanilino)quinoxalin-2-yl]benzenesulfonamide (designated here as B7), that significantly inhibits the interaction between the PRRSV glycoprotein (GP2a or GP4) and the CD163-SRCR5 domain. We further demonstrated that compound B7 inhibits PRRSV infection of PAMs, the primary target of PRRSV in a dose-dependent manner. B7 significantly inhibited the infection caused by both type I and type II PRRSV strains. Further comparison and functional evaluation of chemical compounds structurally related to B7 revealed that the 3-(morpholinosulfonyl)aniline moiety of B7 or the 3-(piperidinylsulfonyl)aniline moiety in a B7 analogue is important for the inhibitory function against PRRSV infection. CONCLUSIONS: Our study identified a novel strategy to potentially prevent PRRSV infection in pigs by blocking the PRRSV-CD163 interaction with small molecules.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Receptores de Superfície Celular/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Inteligência Artificial , Linhagem Celular , Células HEK293 , Humanos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Domínios Proteicos , Suínos
6.
Molecules ; 25(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218364

RESUMO

While loss-of-function mutations in the ATRX gene have been implicated as a driving force for a variety of pediatric brain tumors, as well as pancreatic neuroendocrine tumors, the role of ATRX in gene regulation and oncogenic development is not well-characterized. The ADD domain of ATRX (ATRXADD) localizes the protein to chromatin by specifically binding to the histone H3 tail. This domain is also a primary region that is mutated in these cancers. The overall goal of our studies was to utilize a variety of techniques (experimental and computational) to probe the H3:ATRXADD protein-protein interaction (PPI). We developed two biochemical assays that can be utilized to study the interaction. These assays were utilized to experimentally validate and expand upon our previous computational results. We demonstrated that the three anchor points in the H3 tail (A1, K4, and K9) are all essential for high affinity binding and that disruption of more than one contact region will be required to develop a small molecule that disrupts the PPI. Our approach in this study could be applied to other domains of ATRX, as well as PPIs between other distinct proteins.


Assuntos
Histonas/química , Mapas de Interação de Proteínas , Bioensaio , Biotina/metabolismo , Calorimetria , Histonas/metabolismo , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos
7.
J Med Chem ; 62(8): 3873-3885, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30896941

RESUMO

The Food and Drug Administration-approved antifungal agent, itraconazole (ITZ), has been increasingly studied for its novel biological properties. In particular, ITZ inhibits the hedgehog (Hh) signaling pathway and has the potential to serve as an anticancer chemotherapeutic against several Hh-dependent malignancies. We have extended our studies on ITZ analogues as Hh pathway inhibitors through the design, synthesis, and evaluation of novel des-triazole ITZ analogues that incorporate modifications to the triazolone/side chain region of the scaffold. Our overall results suggest that the triazolone/side chain region can be replaced with various functionalities (hydrazine carboxamides and meta-substituted amides) resulting in improved potency when compared to ITZ. Our studies also indicate that the stereochemical orientation of the dioxolane ring is important for both potent Hh pathway inhibition and compound stability. Finally, our studies suggest that the ITZ scaffold can be successfully modified in terms of functionality and stereochemistry to further improve its anti-Hh potency and physicochemical properties.


Assuntos
Proteínas Hedgehog/antagonistas & inibidores , Itraconazol/química , Triazóis/química , Animais , Sítios de Ligação , Linhagem Celular , Proliferação de Células , Desenho de Fármacos , Proteínas Hedgehog/metabolismo , Humanos , Itraconazol/metabolismo , Itraconazol/farmacologia , Camundongos , Simulação de Dinâmica Molecular , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 163: 320-332, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529635

RESUMO

Inhibition of the hedgehog (Hh) signaling pathway has been validated as a therapeutic strategy to treat basal cell carcinoma and holds potential for several other forms of human cancer. Itraconazole and posaconazole are clinically useful triazole anti-fungals that are being repurposed as anti-cancer agents based on their ability to inhibit the Hh pathway. We have previously demonstrated that removal of the triazole from itraconazole does not affect its ability to inhibit the Hh pathway while abolishing its primary side effect, potent inhibition of Cyp3A4. To develop structure-activity relationships for the related posaconazole scaffold, we synthesized and evaluated a series of des-triazole analogues designed through both ligand- and structure-based methods. These compounds demonstrated improved anti-Hh properties compared to posaconazole and enhanced stability without inhibiting Cyp3A4. In addition, we utilized a series of molecular dynamics and binding energy studies to probe specific interactions between the compounds and their proposed binding site on Smoothened. These studies strongly suggest that the tetrahydrofuran region of the scaffold projects out of the binding site and that π-π interactions between the compound and Smoothened play a key role in stabilizing the bound analogues.


Assuntos
Proteínas Hedgehog/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia , Antifúngicos/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor Smoothened/metabolismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/uso terapêutico
9.
J Chem Inf Model ; 58(11): 2266-2277, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30289707

RESUMO

Translesion synthesis (TLS) is a mechanism of replication past damaged DNA through which multiple forms of human cancer survive and acquire resistance to first-line genotoxic chemotherapies. As such, TLS is emerging as a promising target for the development of a new class of anticancer agents. The C-terminal domain of the DNA polymerase Rev1 (Rev1-CT) mediates assembly of the functional TLS complex through protein-protein interactions (PPIs) with Rev1 interacting regions (RIRs) of several other TLS DNA polymerases. Utilizing structural knowledge of the Rev1-CT/RIR interface, we have identified the phenazopyridine scaffold as an inhibitor of this essential TLS PPI. We demonstrate direct binding of this scaffold to Rev1-CT, and the synthesis and evaluation of a small series of analogues have provided important structure-activity relationships for further development of this scaffold. Furthermore, we utilized the umbrella sampling method to predict the free energy of binding to Rev1-CT for each of our analogues. Binding energies calculated through umbrella sampling correlated well with experimentally determined IC50 values, validating this computational tool as a viable approach to predict the biological activity for inhibitors of the Rev1-CT/RIR PPI.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Fenazopiridina/análogos & derivados , Fenazopiridina/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Termodinâmica
10.
Biochim Biophys Acta Gen Subj ; 1861(2): 168-177, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27825830

RESUMO

BACKGROUND: Multiple oxysterols (OHCs) have demonstrated the ability to act as agonists or antagonists of the hedgehog (Hh) signaling pathway, a developmental signaling pathway that has been implicated as a potential therapeutic target in a variety of human diseases. These OHCs are known to modulate Hh signaling through direct binding interactions with the N-terminal cysteine rich domain (CRD) of Smoothened, a key regulator of Hh signal transduction. METHODS: Homology modeling, molecular dynamics simulations, and MM/GBSA energy calculations were utilized to explore binding interactions between the OHC scaffold and the human Smoothened CRD. Follow-up cellular assays explored the in vitro activity of potential Hh pathway modulators. RESULTS: Structural features that govern key molecular interactions between the Smoothened CRD and the OHC scaffold were identified. Orientation of the iso-octyl side chain as well as the overall entropy of the OHC-CRD complex are important for determining activity against the Hh pathway. OHC 9, which was previously thought to be inactive because it was not an Hh agonist, was identified as an inhibitor of Hh signal transmission. CONCLUSIONS: Calculated MM/GBSA binding energies for OHCs in complex with the CRD of Smoothened correlate well with in vitro Hh modulatory activity. Compounds with high affinity stabilize Smoothened and are antagonists, whereas compounds with reduced affinity allow a conformational change in Smoothened that results in pathway activation. GENERAL SIGNIFICANCE: Computational modeling and molecular dynamics simulations can be used to predict whether a small molecule that binds the Smoothened CRD will be an agonist or antagonist of the pathway.


Assuntos
Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Oxisteróis/antagonistas & inibidores , Oxisteróis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Cisteína/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/fisiologia , Domínios Proteicos , Relação Estrutura-Atividade
11.
Mol Divers ; 19(4): 965-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26183841

RESUMO

Aurora kinases are sub-divided into Aurora A, Aurora B, and Aurora C kinases that are considered as prospective targets for a new class of anticancer drugs. In this work, a 4-D-QSAR model using an LQTA-QSAR approach with previously reported 31 derivatives of benzo[e]pyrimido[5,4 -b][1,4]diazepin -6(11H)-one as potent Aurora kinase A inhibitors has been created. Instead of single conformation, the conformational ensemble profile generated for each ligand by using trajectories and topology information retrieved from molecular dynamics simulations from GROMACS package were aligned and used for the calculation of intermolecular interaction energies at each grid point. The descriptors generated on the basis of these Coulomb and Lennard-Jones potentials as independent variables were used to perform a PLS analysis using biological activity as dependent variable. A good predictive model was generated with nine field descriptors and five latent variables. The model showed [Formula: see text]; [Formula: see text] and [Formula: see text]. This model was further validated systematically by using different validation parameters. This 4D-QSAR model gave valuable information to recognize features essential to adapt and develop novel potential Aurora kinase inhibitors.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Pirimidinonas/química , Pirimidinonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Aurora Quinase A/química , Conformação Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade
12.
Mol Divers ; 18(4): 853-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112687

RESUMO

Aurora kinases belong to family of highly conserved serine/threonine protein kinases that are involved in diverse cell cycle events and play a major role in regulation of cell division. Abnormal expression of Aurora kinases may lead to cancer; hence, these are considered as a potential target in cancer treatment. In this research article, we identified three novel Aurora A inhibitors using modern computational tools. A four-point common 3D pharmacophore hypothesis of Aurora A (AurA) inhibitors was developed using a diverse set of 55 thienopyrimidine derivatives. A three-dimensional quantitative structure-activity relationship (3D-QSAR) study was carried out using atom-based alignment of diverse set of 55 molecules to evaluate the structure- activity relationships. Docking and 3D-QSAR studies were performed with the 3D structure of AurA to evaluate the generated pharmacophore. The pharmacophore model and 3D-QSAR results complemented the results of our docking study. The pharmacophore hypothesis, which yields the best results, was used to screen the Zinc 'clean drug-like' database. Various database filters such as 3D-arrangement of pharmacophoric features, predicted activity and binding interaction score were used to retrieve hits having potential AurA inhibition activity.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Conjuntos de Dados como Assunto , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA