Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cells ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891087

RESUMO

Ubiquitin-specific protease 14 (USP14), one of the three major proteasome-associated deubiquitinating enzymes (DUBs), is known to be activated by the AKT-mediated phosphorylation at Ser432. Thereby, AKT can regulate global protein degradation by controlling the ubiquitin-proteasome system (UPS). However, the exact molecular mechanism of USP14 activation by AKT phosphorylation at the atomic level remains unknown. By performing the molecular dynamics (MD) simulation of the USP14 catalytic domain at three different states (inactive, active, and USP14-ubiquitin complex), we characterized the change in structural dynamics by phosphorylation. We observed that the Ser432 phosphorylation induced substantial conformational changes of USP14 in the blocking loop (BL) region to fold it from an open loop into a ß-sheet, which is critical for USP14 activation. Furthermore, phosphorylation also increased the frequency of critical hydrogen bonding and salt bridge interactions between USP14 and ubiquitin, which is essential for DUB activity. Structural dynamics insights from this study pinpoint the important local conformational landscape of USP14 by the phosphorylation event, which would be critical for understanding USP14-mediated proteasome regulation and designing future therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-akt , Ubiquitina Tiolesterase , Fosforilação , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Ubiquitina/metabolismo , Ativação Enzimática , Domínio Catalítico , Ligação Proteica , Conformação Proteica
2.
Phytother Res ; 37(7): 2811-2826, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36808768

RESUMO

Several reports have stated the neuroprotective and learning/memory effects of Tachyspermum ammi seed extract (TASE) and its principal component thymol; however, little is known about its underlying molecular mechanisms and neurogenesis potential. This study aimed to provide insights into TASE and a thymol-mediated multifactorial therapeutic approach in a scopolamine-induced Alzheimer's disease (AD) mouse model. TASE and thymol supplementation significantly reduced oxidative stress markers such as brain glutathione, hydrogen peroxide, and malondialdehyde in mouse whole brain homogenates. Tumor necrosis factor-alpha was significantly downregulated, whereas the elevation of brain-derived neurotrophic factor and phospho-glycogen synthase kinase-3 beta (serine 9) enhanced learning and memory in the TASE- and thymol-treated groups. A significant reduction in the accumulation of Aß 1-42 peptides was observed in the brains of TASE- and thymol-treated mice. Furthermore, TASE and thymol significantly promoted adult neurogenesis, with increased doublecortin positive neurons in the subgranular and polymorphic zones of the dentate gyrus in treated-mice. Collectively, TASE and thymol could  potentially act as natural therapeutic agents for the treatment of  neurodegenerative disorders, such as  AD.


Assuntos
Doença de Alzheimer , Ammi , Apiaceae , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Timol/farmacologia , Timol/uso terapêutico , Escopolamina/efeitos adversos , Neuroproteção , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834524

RESUMO

Shikonin, a phytochemical present in the roots of Lithospermum erythrorhizon, is well-known for its broad-spectrum activity against cancer, oxidative stress, inflammation, viruses, and anti-COVID-19 agents. A recent report based on a crystallographic study revealed a distinct conformation of shikonin binding to the SARS-CoV-2 main protease (Mpro), suggesting the possibility of designing potential inhibitors based on shikonin derivatives. The present study aimed to identify potential shikonin derivatives targeting the Mpro of COVID-19 by using molecular docking and molecular dynamics simulations. A total of 20 shikonin derivatives were screened, of which few derivatives showed higher binding affinity than shikonin. Following the MM-GBSA binding energy calculations using the docked structures, four derivatives were retained with the highest binding energy and subjected to molecular dynamics simulation. Molecular dynamics simulation studies suggested that alpha-methyl-n-butyl shikonin, beta-hydroxyisovaleryl shikonin, and lithospermidin-B interacted with two conserved residues, His41 and Cys145, through multiple bonding in the catalytic sites. This suggests that these residues may effectively suppress SARS-CoV-2 progression by inhibiting Mpro. Taken together, the present in silico study concluded that shikonin derivatives may play an influential role in Mpro inhibition.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Domínio Catalítico , Antivirais/farmacologia
4.
Curr Neuropharmacol ; 21(2): 353-379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35272592

RESUMO

Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.


Assuntos
Fitoestrógenos , Qualidade de Vida , Humanos , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Estrogênios/uso terapêutico , Estrogênios/farmacologia , Encéfalo
5.
Metabolites ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422293

RESUMO

Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.

6.
Front Pharmacol ; 13: 1015835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299900

RESUMO

Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.

7.
Curr Pharm Des ; 28(19): 1561-1580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652403

RESUMO

Prostate cancer remains one of the most frequent and deadliest malignancies in males, where the rate of disease progression is closely associated with the type of dietary intake, specifically a Western-style diet. Indeed intake of the Asian diet, which contains abundant phytoestrogens, is inversely correlated with a higher risk of prostate cancer, suggesting a chemoprotective effect of phytoestrogen against cancer progression. Although the role of phytoestrogens in cancer treatment has been well documented, their impact on prostate cancer is not well understood. Therefore, the present review discusses the possible chemopreventive effect of phytoestrogens, emphasizing their efficacy at the different stages of carcinogenesis. Furthermore, phytoestrogens provide a cytoprotective effect in conventional chemotherapy and enhance chemosensitivity to tumor cells, which have also been discussed. This compilation provides a solid basis for future research on phytoestrogens as a promising avenue for anticancer drug development and also recommends these beneficiary compounds in the daily diet to manage and prevent prostate cancer.


Assuntos
Anticarcinógenos , Neoplasias da Próstata , Dieta , Humanos , Masculino , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/prevenção & controle
8.
Sci Rep ; 12(1): 9378, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672339

RESUMO

Single nucleotide variations in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with many neurodegenerative diseases, including Nasu-Hakola disease (NHD), frontotemporal dementia (FTD), and late-onset Alzheimer's disease because they disrupt ligand binding to the extracellular domain of TREM2. However, the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) in TREM2 on disease progression remain unknown. In this study, we identified several high-risk nsSNPs in the TREM2 gene using various deleterious SNP predicting algorithms and analyzed their destabilizing effects on the ligand recognizing region of the TREM2 immunoglobulin (Ig) domain by molecular dynamics (MD) simulation. Cumulative prediction by all tools employed suggested the three most deleterious nsSNPs involved in loss of TREM2 function are rs549402254 (W50S), rs749358844 (R52C), and rs1409131974 (D104G). MD simulation showed that these three variants cause substantial structural alterations and conformational remodeling of the apical loops of the TREM2 Ig domain, which is responsible for ligand recognition. Detailed analysis revealed that these variants substantially increased distances between apical loops and induced conformation remodeling by changing inter-loop nonbonded contacts. Moreover, all nsSNPs changed the electrostatic potentials near the putative ligand-interacting region (PLIR), which suggested they might reduce specificity or loss of binding affinity for TREM2 ligands. Overall, this study identifies three potential high-risk nsSNPs in the TREM2 gene. We propose further studies on the molecular mechanisms responsible for loss of TREM2 function and the associations between TREM2 nsSNPs and neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Doenças Neurodegenerativas , Osteocondrodisplasias , Panencefalite Esclerosante Subaguda , Demência Frontotemporal/genética , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Doenças Neurodegenerativas/genética , Polimorfismo de Nucleotídeo Único , Receptores Imunológicos/genética
9.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328531

RESUMO

Disruptive neuronal migration during early brain development causes severe brain malformation. Characterized by mislocalization of cortical neurons, this condition is a result of the loss of function of migration regulating genes. One known neuronal migration disorder is lissencephaly (LIS), which is caused by deletions or mutations of the LIS1 (PAFAH1B1) gene that has been implicated in regulating the microtubule motor protein cytoplasmic dynein. Although this class of diseases has recently received considerable attention, the roles of non-synonymous polymorphisms (nsSNPs) in LIS1 on lissencephaly progression remain elusive. Therefore, the present study employed combined bioinformatics and molecular modeling approach to identify potential damaging nsSNPs in the LIS1 gene and provide atomic insight into their roles in LIS1 loss of function. Using this approach, we identified three high-risk nsSNPs, including rs121434486 (F31S), rs587784254 (W55R), and rs757993270 (W55L) in the LIS1 gene, which are located on the N-terminal domain of LIS1. Molecular dynamics simulation highlighted that all variants decreased helical conformation, increased the intermonomeric distance, and thus disrupted intermonomeric contacts in the LIS1 dimer. Furthermore, the presence of variants also caused a loss of positive electrostatic potential and reduced dimer binding potential. Since self-dimerization is an essential aspect of LIS1 to recruit interacting partners, thus these variants are associated with the loss of LIS1 functions. As a corollary, these findings may further provide critical insights on the roles of LIS1 variants in brain malformation.


Assuntos
Lisencefalia , Malformações do Sistema Nervoso , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Dineínas/metabolismo , Humanos , Lisencefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Malformações do Sistema Nervoso/genética , Nucleotídeos/metabolismo
10.
Heliyon ; 8(1): e08815, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35128104

RESUMO

BACKGROUND: Cancer has become a significant concern in the medical sector with increasing disease complexity. Although some available conventional treatments are still a blessing for cancer patients, short-and long-term adverse effects and poor efficiency make it more difficult to treat cancer patients, demonstrating the need for new potent and selective anticancer drugs. In search of potent anticancer agents, naturally occurring compounds have always been admired due to their structural diversity, where Hesperetin (HSP) may be one of the potent candidates. PURPOSE: We aimed to summarize all sources, pharmacological properties, anticancer activities of HSP against numerous cancers types through targeting multiple pathological processes, mechanism of HSP on sensitizing the current anti-cancer agents and other phytochemicals, overcoming resistance pattern and determining absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox). METHODS: Information was retrieved from PubMed, Science Direct, and Google Scholar based on some key points like Hesperetin, cancer name, anticancer resistance, nanoformulation, and ADME/Tox was determined by in silico approaches. RESULT: HSP is a phytoestrogen present in citrus fruits in a high concentration (several hundred mg/kg) and exhibited anti-cancer activities through interfering at several pathways. HSP can suppress tumor formation by targeting several cellular proteins such as cell cycle regulatory, apoptosis, metastatic, tyrosine kinase, growth factor receptor, estrogen metabolism, and antioxidant-related protein.HSP has shown remarkable synergistic properties in combination therapy and has been reported to overcome multidrug cancer resistance drugs, leading to an improved defensive mechanism. These anticancer activities of HSP may be due to proper structural chemistry. CONCLUSION: Overall, HSP showed potential anticancer activities against all cancer and possess better pharmacokinetic properties. So this phytochemical alone or combination with other agents can be an effective alternative drug for cancer treatment.

11.
Nutrients ; 13(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073784

RESUMO

Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.


Assuntos
Nigella sativa/química , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Benzoquinonas/análise , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Metabolismo Energético , Alimento Funcional , Humanos , Imunomodulação/efeitos dos fármacos , Inflamação/terapia , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos , Preparações de Plantas/farmacocinética
12.
Front Pharmacol ; 12: 639628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025409

RESUMO

Bioactive plant derived compounds are important for a wide range of therapeutic applications, and some display promising anticancer properties. Further evidence suggests that phytochemicals modulate autophagy and apoptosis, the two crucial cellular pathways involved in the underlying pathobiology of cancer development and regulation. Pharmacological targeting of autophagy and apoptosis signaling using phytochemicals therefore offers a promising strategy that is complementary to conventional cancer chemotherapy. In this review, we sought to highlight the molecular basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology of cancer, and explore this fundamental cellular process as a druggable anticancer target. We also aimed to present recent advances and address the limitations faced in the therapeutic development of phytochemical-based anticancer drugs.

13.
Mar Drugs ; 19(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804766

RESUMO

Alzheimer's disease (AD) is a degenerative brain disorder characterized by a progressive decline in memory and cognition, mostly affecting the elderly. Numerous functional bioactives have been reported in marine organisms, and anti-Alzheimer's agents derived from marine resources have gained attention as a promising approach to treat AD pathogenesis. Marine sterols have been investigated for several health benefits, including anti-cancer, anti-obesity, anti-diabetes, anti-aging, and anti-Alzheimer's activities, owing to their anti-inflammatory and antioxidant properties. Marine sterols interact with various proteins and enzymes participating via diverse cellular systems such as apoptosis, the antioxidant defense system, immune response, and cholesterol homeostasis. Here, we briefly overview the potential of marine sterols against the pathology of AD and provide an insight into their pharmacological mechanisms. We also highlight technological advances that may lead to the potential application of marine sterols in the prevention and therapy of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Organismos Aquáticos/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Esteróis/farmacologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacocinética , Antioxidantes/isolamento & purificação , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/metabolismo , Homeostase , Humanos , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Esteróis/isolamento & purificação , Esteróis/farmacocinética
14.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374456

RESUMO

Recently, we showed that N-acetylglucosamine kinase (NAGK), an enzyme of amino sugar metabolism, interacts with dynein light chain roadblock type 1 (DYNLRB1) and promotes the functions of dynein motor. Here, we report that NAGK interacts with nuclear distribution protein C (NudC) and lissencephaly 1 (Lis1) in the dynein complex. Yeast two-hybrid assays, pull-down assays, immunocytochemistry, and proximity ligation assays revealed NAGK-NudC-Lis1-dynein complexes around nuclei, at the leading poles of migrating HEK293T cells, and at the tips of migratory processes of cultured rat neuroblast cells. The exogenous expression of red fluorescent protein (RFP)-tagged NAGK accelerated HEK293T cell migration during in vitro wound-healing assays and of neurons during in vitro neurosphere migration and in utero electroporation assays, whereas NAGK knockdown by short hairpin RNA (shRNA) delayed migration. Finally, a small NAGK peptide derived from the NudC interacting domain in in silico molecular docking analysis retarded the migrations of HEK293T and SH-SY5Y cells. These data indicate a functional interaction between NAGK and dynein-NudC-Lis1 complex at the nuclear envelope is required for the regulation of cell migration.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Movimento Celular , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Feminino , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/química , Fenótipo , Mapeamento de Interação de Proteínas , Ratos , Ratos Sprague-Dawley , Técnicas do Sistema de Duplo-Híbrido , Cicatrização
15.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066695

RESUMO

The ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound exporter protein involved in regulating serum HDL level by exporting cholesterol and phospholipids to load up in lipid-poor ApoA-I and ApoE, which allows the formation of nascent HDL. Mutations in the ABCA1 gene, when presents in both alleles, disrupt the canonical function of ABCA1, which associates with many disorders related to lipid transport. Although many studies have reported the phenotypic effects of a large number of ABCA1 variants, the pathological effect of non-synonymous polymorphisms (nsSNPs) in ABCA1 remains elusive. Therefore, aiming at exploring the structural and functional consequences of nsSNPs in ABCA1, in this study, we employed an integrated computational approach consisting of nine well-known in silico tools to identify damaging SNPs and molecular dynamics (MD) simulation to get insights into the magnitudes of the damaging effects. In silico tools revealed four nsSNPs as being most deleterious, where the two SNPs (G1050V and S1067C) are identified as the highly conserved and functional disrupting mutations located in the NBD1 domain. MD simulation suggested that both SNPs, G1050V and S1067C, changed the overall structural flexibility and dynamics of NBD1, and induced substantial alteration in the structural organization of ATP binding site. Taken together, these findings direct future studies to get more insights into the role of these variants in the loss of the ABCA1 function.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Fenótipo , Ligação Proteica
16.
Cell Death Dis ; 11(8): 619, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796833

RESUMO

Emerging evidence indicates that neurodegenerative diseases (NDs) result from a failure to clear toxic protein aggregates rather than from their generation. We previously showed N-acetylglucosamine kinase (NAGK) promotes dynein functionality and suggested this might promote aggregate removal and effectively address proteinopathies. Here, we report NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and efficiently suppresses mutant huntingtin (mHtt) (Q74) and α-synuclein (α-syn) A53T aggregation in mouse brain cells. A kinase-inactive NAGKD107A also efficiently cleared Q74 aggregates. Yeast two-hybrid selection and in silico protein-protein docking analysis showed the small domain of NAGK (NAGK-DS) binds to the C-terminal of DYNLRB1. Furthermore, a small peptide derived from NAGK-DS interfered with Q74 clearance. We propose binding of NAGK-DS to DYNLRB1 'pushes up' the tail of dynein light chain and confers momentum for inactive phi- to active open-dynein transition.


Assuntos
Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Agregados Proteicos , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Dineínas do Citoplasma/química , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Ligação Proteica , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo
17.
Phytomedicine ; 69: 153201, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32276177

RESUMO

BACKGROUND: Marine algae are rich in some unique biologically active secondary metabolites having diverse pharmacological benefits. Of these, sterols comprise a group of functional lipid compounds that have attracted much attention to natural product scientists. PURPOSE: This review was aimed to update information on the health effects of algae-derived phytosterols and their molecular interactions in various aspects of human health and diseases and to address some future perspectives that may open up a new dimension of pharmacological potentials of algal sterols. METHODS: A literature-based search was carried out to retrieve published research information on the potential health effects of algal phytosterols with their pharmacological mechanisms from accessible online databases, such as Pubmed, Google Scholar, Web of Science, and Scopus, using the key search terms of 'marine algae sterol' and 'health potentials such as antioxidant or anti-inflammatory or anti-Alzheimer's or anti-obesity or cholesterol homeostasis or hepatoprotective, antiproliferative, etc.' RESULTS: Phytosterols of marine algae, particularly fucosterol, have been investigated for a plethora of health benefits, including anti-diabetes, anti-obesity, anti-Alzheimer's, antiaging, anticancer, and hepatoprotection, among many others, which are attributed to their antioxidant, anti-inflammatory, immunomodulatory and cholesterol-lowering properties, indicating their potentiality as therapeutic leads. These sterols interact with enzymes and various other proteins that are actively participating in different cellular pathways, including antioxidant defense system, apoptosis and cell survival, metabolism, and homeostasis. CONCLUSION: In this review, we briefly overview the chemistry, pharmacokinetics, and distribution of algal sterols, and provide critical insights into their potential health effects and the underlying pharmacological mechanisms, beyond the well-known cholesterol-lowering paradigm.


Assuntos
Fitosteróis/química , Fitosteróis/farmacologia , Alga Marinha/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Organismos Aquáticos , Colesterol/metabolismo , Humanos , Phaeophyceae/química , Fitosteróis/análise , Fitosteróis/farmacocinética , Rodófitas/química , Estigmasterol/análogos & derivados , Estigmasterol/farmacologia , Distribuição Tecidual
18.
Sci Rep ; 10(1): 3663, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107424

RESUMO

Recently, the critical roles played by genetic variants of TREM2 (Triggering Receptor Expressed on Myeloid cells 2) in Alzheimer's disease have been aggressively highlighted. However, few studies have focused on the deleterious roles of Nasu-Hakola disease (NHD) associated TREM2 variants. In order to get insights into the contributions made by these variants to neurodegeneration, we investigated the influences of four NHD associated TREM2 mutations (Y38C, W50C, T66M, and V126G) on loss-of-function, and followed this with in silico prediction and conventional molecular dynamics simulation. NHD mutations were predicted to be highly deleterious by eight different in silico bioinformatics tools and found to induce conformational changes by molecular dynamics simulation. As compared with the wild-type, the four variants produced substantial differences in the collective motions of loop regions, which not only promoted structural remodeling in the CDR2 (complementarity-determining region 2) loop but also in the CDR1 loop, by changing inter- and intra-loop hydrogen bonding networks. In addition, structural studies in a free energy landscape analysis showed that Y38, T66, and V126 are crucial for maintaining the structural features of CDR1 and CDR2 loops, and that mutations in these positions produced steric clashes and loss of ligand binding. These results showed the presence of mutations in the TREM2 ectodomain induced flexibility and caused structural alterations. Dynamical scenarios, as provided by the present study, may be critical to our understanding of the roles of these TREM2 mutations in neurodegenerative diseases.


Assuntos
Lipodistrofia , Glicoproteínas de Membrana/química , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Osteocondrodisplasias , Receptores Imunológicos/química , Panencefalite Esclerosante Subaguda , Substituição de Aminoácidos , Humanos , Glicoproteínas de Membrana/genética , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores Imunológicos/genética
19.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835852

RESUMO

Sulfotransferase 1A1 (SULT1A1) is responsible for catalyzing various types of endogenous and exogenous compounds. Accumulating data indicates that the polymorphism rs9282861 (R213H) is responsible for inefficient enzymatic activity and associated with cancer progression. To characterize the detailed functional consequences of this mutation behind the loss-of-function of SULT1A1, the present study deployed molecular dynamics simulation to get insights into changes in the conformation and binding energy. The dynamics scenario of SULT1A1 in both wild and mutated types as well as with and without ligand showed that R213H induced local conformational changes, especially in the substrate-binding loop rather than impairing overall stability of the protein structure. The higher conformational changes were observed in the loop3 (residues, 235-263), turning loop conformation to A-helix and B-bridge, which ultimately disrupted the plasticity of the active site. This alteration reduced the binding site volume and hydrophobicity to decrease the binding affinity of the enzyme to substrates, which was highlighted by the MM-PBSA binding energy analysis. These findings highlight the key insights of structural consequences caused by R213H mutation, which would enrich the understanding regarding the role of SULT1A1 mutation in cancer development and also xenobiotics management to individuals in the different treatment stages.


Assuntos
Arilsulfotransferase/genética , Polimorfismo de Nucleotídeo Único/genética , Arilsulfotransferase/química , Sítios de Ligação , Simulação por Computador , Estabilidade Enzimática , Humanos , Ligantes , Modelos Moleculares , Mutação/genética , Análise de Componente Principal , Estrutura Secundária de Proteína , Especificidade por Substrato , Termodinâmica
20.
Sci Rep ; 9(1): 18919, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831796

RESUMO

Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3ß, 6ß-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.


Assuntos
Axônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Colestanos/farmacologia , Dendritos/metabolismo , Hipocampo/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Axônios/patologia , Colestanos/química , Dendritos/patologia , Hipocampo/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA