Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Obes Sci Pract ; 10(2): e752, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618521

RESUMO

Background: Lipotoxicity, caused by adipocyte triglyceride over-accumulation, contributes to obesity-related comorbidities such as hypertension, type 2 diabetes, coronary heart disease, respiratory dysfunction, and osteoarthritis. This study focuses on determining how sirtuin-1 (SIRT-1) mediates quercetin's (QCT) effect on 3T3-L1 adipocytes. Key aspects of this study include preventing adipogenesis, inducing lipolysis, and stimulating adipocyte apoptosis. Methods: 3T3-L1 adipocytes underwent treatment with varying QCT doses, lipopolysaccharide (LPS), and the SIRT-1 inhibitor EX-527, followed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide [MTT] assay for cell viability assessment. Furthermore, quantitative real-time polymerase chain reaction measured mRNA expression levels of adipogenesis markers (fatty acid synthase [FASN] and peroxisome proliferator-activated receptor gamma [PPARγ]), lipolysis markers (adipose triglyceride lipase [ATGL] and hormone-sensitive lipase [HSL]), and apoptosis markers (B-cell lymphoma2 [Bcl-2], Bcl-2 Associated -X-protein [BAX] and Caspase-3). Results: The data showed that LPS + QCT significantly reduced cell viability in a dose- and time-dependent manner, unaffected by LPS + QCT + EX-527. Treatment with LPS + QCT did not affect FASN and PPARγ expression but significantly increased ATGL and HSL mRNA expression compared with LPS alone. Interestingly, EX-527 reversed the effects of LPS + QCT on lipogenesis and lipolysis markers completely. QCT enhanced apoptosis in a SIRT-1 independent pattern. Conclusion: The data suggest that QCT suppresses adipogenesis while increasing lipolysis via SIRT-1. However, QCT's effects on apoptosis appear to be independent of SIRT-1. These findings provide further evidence for QCT's effects on adipocytes, particularly its interaction with SIRT-1.

3.
Mol Biol Rep ; 51(1): 599, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689181

RESUMO

BACKGROUND: CPUK02 (15-Oxosteviol benzyl ester) is a semi-synthetic derivative of stevioside known for its anticancer effects. It has been reported that the natural compound of stevioside and its associated derivatives enhances the sensitivity of cancer cells to conventional anti-cancer agents by inducing endoplasmic reticulum (ER) stress. In response to ER stress, autophagy and unfolded protein responses (UPR) are activated to restore cellular homeostasis. Consequently, the primary aim of this study is to investigate the impact of CPUK02 treatment on UPR and autophagy markers in two colorectal cancer cell lines. METHODS: HCT116 and SW480 cell lines were treated with various concentrations of CPUK02 for 72 h. The expression levels of several proteins and enzymes were evaluated to investigate the influence of CPUK02 on autophagy and UPR pathways. These include glucose-regulated protein 78 (GRP78), Inositol-requiring enzyme 1-α (IRE1-α), spliced X-box binding protein 1 (XBP-1 s), protein kinase R-like ER kinase (PERK), C/EBP homologous protein (CHOP), Beclin-1, P62 and Microtubule-associated protein 1 light chain 3 alpha (LC3ßII). The evaluation was conducted using western blotting and quantitative real-time PCR techniques. RESULTS: The results obtained indicate that the treatment with CPUK02 reduced the expression of UPR markers, including GRP78 and IRE1-α at protein levels and XBP-1 s, PERK, and CHOP at mRNA levels in both HCT116 and SW480 cell lines. Furthermore, CPUK02 also influenced autophagy by decreasing Beclin-1 and increasing P62 and LC3ßII at mRNA levels in both HCT116 and SW480 treated cells. CONCLUSIONS: The study findings suggest CPUK02 may exert its cytotoxic effects by inhibiting UPR and autophagy flux in colorectal cancer cells.


Assuntos
Autofagia , Neoplasias Colorretais , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Humanos , Autofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Linhagem Celular Tumoral , Diterpenos do Tipo Caurano/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
4.
Mol Biol Rep ; 51(1): 379, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429605

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a form of kidney cancer characterized by dysregulated angiogenesis and multidrug resistance. Hypoxia-induced tumor progression plays a crucial role in ccRCC pathogenesis. Beta-hydroxybutyrate (BHB) and quercetin (QCT) have shown potential in targeting angiogenesis and drug resistance in various cancer types. This study investigates the combined effects of BHB and QCT in hypoxia-induced Caki-1 cells. METHODS: Caki-1 cells were subjected to normoxic and hypoxic conditions and treated with BHB, QCT, or a combination of both. Cell-viability was assessed using the MTT assay, and mRNA expression levels of key angiogenesis-related genes (HIF-1α/2α, VEGF, Ang-1, Ang-2, and MDR4) were quantified through real-time PCR during 24 and 48 h. RESULTS: BHB and QCT treatments, either alone or in combination, significantly reduced cell-viability in Caki-1 cells (p < 0.05). Moreover, the combined therapy demonstrated a potential effect in downregulating the expression of angiogenesis-related genes and MDR4 in hypoxia-induced cells, with a marked reduction in HIF-1α/2α, VEGF, Ang-1, and MDR4 expression (p < 0.05). The expression of Ang-2 increases significantly in presence of BHB combined QCT treatment. CONCLUSION: This study highlights the promising potential of a combination therapy involving BHB and QCT in mitigating angiogenesis and MDR4 expression in hypoxia-induced ccRCC cells. These findings support further investigation into the underlying mechanisms and warrant clinical studies to evaluate the therapeutic value of this combined treatment for ccRCC patients. This research provides new insights into addressing the challenges posed by angiogenesis and drug resistance in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Ácido 3-Hidroxibutírico , Quercetina/farmacologia , Quercetina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Hipóxia , Resistência a Múltiplos Medicamentos
5.
Mol Biol Rep ; 51(1): 168, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252187

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) plays a significant role in the mortality associated with kidney cancer. Targeting biological processes that inhibit cancer growth opens up new treatment possibilities. The unfolded protein response (UPR) and apoptosis have crucial roles in RCC progression. This study investigates the impact of ß-hydroxybutyrate (BHB) on ccRCC cells under glucose deprivation resembling as a ketogenic diet. METHOD: Caki-1 ccRCC cells were exposed to decreasing glucose concentrations alone or in combination with 10 or 25 mM BHB during 48 and 72 h. Cell viability was determined using MTT assay. The mRNA expression level of apoptosis-and UPR-related markers (Bcl-2, Bax, caspase 3, XBP1s, BIP, CHOP, ATF4, and ATF6) were assayed by qRT-PCR. RESULTS: Cell viability experiments demonstrated that combining different doses of BHB with decreasing glucose levels initially improved cell viability after 48 h. Nevertheless, this trend reversed after 72 h, with higher impacts disclosed at 25 mM BHB. Apoptosis was induced in BHB-treated cells as caspase-3 and Bax were increased and Bcl-2 was downregulated. BHB supplementation reduced UPR-related gene expression (XBP1s, BIP, CHOP, ATF4, and ATF6), revealing a possible mechanism by which BHB affects cell survival. CONCLUSION: This research emphasizes the dual effect of BHB, initially suppressing cell- survival under glucose deprivation but eventually triggering apoptosis and suppressing UPR signaling. These data highlight the intricate connection between metabolic reprogramming and cellular stress response in ccRCC. Further research is recommended to explore the potential of BHB as a therapeutic strategy for managing ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Ácido 3-Hidroxibutírico/farmacologia , Proteína X Associada a bcl-2/genética , Apoptose , Neoplasias Renais/genética , Glucose
6.
Med Oncol ; 40(7): 199, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294480

RESUMO

Colorectal cancer (CRC) is a prevalent gastrointestinal neoplasm that ranks fourth in terms of cancer-related deaths worldwide. In the process of CRC progression, multiple ubiquitin-conjugating enzymes (E2s) are involved; UBE2Q1 is one of those newly identified E2s that is markedly expressed in human colorectal tumors. Since p53 is a well-known tumor suppressor and defined as a key factor to be targeted by the ubiquitin-proteasome system, we hypothesized that UBE2Q1 might contribute to CRC progression through the modulation of p53. Using the lipofection method, the cultured SW480 and LS180 cells were transfected with the UBE2Q1 ORF-containing pCMV6-AN-GFP vector. Then, quantitative RT-PCR was used to assay the mRNA expression levels of p53's target genes, i.e., Mdm2, Bcl2, and Cyclin E. Moreover, Western blot analysis was performed to confirm the cellular overexpression of UBE2Q1 and assess the protein levels of p53, pre- and post-transfection. The expression of p53's target genes were cell line-dependent except for Mdm2 that was consistent with the findings of p53. The results of Western blotting demonstrated that the protein levels of p53 were greatly lower in UBE2Q1-transfected SW480 cells compared to the control SW480 cells. However, the reduced levels of p53 protein were not remarkable in the transfected LS180 cells compared to the control cells. The suppression of p53 is believed to be the result of UBE2Q1-dependent ubiquitination and its subsequent proteasomal degradation. Furthermore, the ubiquitination of p53 can act as a signal for degradation-independent functions, such as nuclear export and suppressing the p53's transcriptional activities. In this context, the decreased Mdm2 levels can moderate the proteasome-independent mono-ubiquitination of p53. The ubiquitinated p53 modulates the transcriptional levels of target genes. Therefore, the up-modulation of UBE2Q1 may influence the transcriptional activities depending on p53, and thereby contributes to CRC progression through regulating the p53.


Assuntos
Neoplasias Colorretais , Enzimas de Conjugação de Ubiquitina , Humanos , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitinação , Neoplasias Colorretais/patologia
7.
Front Endocrinol (Lausanne) ; 14: 1123999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798664

RESUMO

Background: Modern societies face infertility as a global challenge. There are certain environmental conditions and disorders that damage testicular tissue and may cause male infertility. Melatonin, as a potential antioxidant, may protect testicular tissue. Therefore, we conducted this systematic review and meta-analysis to evaluate the effects of melatonin in animal models against physical, heat, and ischemic damage to the testicular tissue. Methods: PubMed, Scopus, and Web of Science were systematically searched to identify animal trials evaluating the protective effect of melatonin therapy on rodent testicular tissue when it is exposed to physical, thermal, ischemic, or hypobaric oxygen stress. Random-effect modeling was used to estimate the standardized mean difference and 95% confidence intervals based on the pooled data. Additionally, the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool was used to assess the risk of bias. The study protocol was prospectively registered in PROSPERO (CRD42022354599). Results: A total of 41 studies were eligible for review out of 10039 records. Studies employed direct heat, cryptorchidism, varicocele, torsion-detorsion, testicular vascular occlusion, hypobaric hypoxia, ischemia-reperfusion, stress by excessive or restraint activity, spinal cord injury, and trauma to induce stress in the subjects. The histopathological characteristics of testicular tissue were generally improved in rodents by melatonin therapy. Based on the pooled data, sperm count, morphology, forward motility, viability, Johnsen's biopsy score, testicular tissue glutathione peroxidase, and superoxide dismutase levels were higher in the melatonin treatment rodent arms. In contrast, the malondialdehyde level in testicular tissue was lower in the treatment rodent arms. The included studies suffered from a high risk of bias in most of the SYRCLE domains. Conclusion: This study concludes that melatonin therapy was associated with improved testicular histopathological characteristics, reproductive hormonal panel, and tissue markers of oxidative stress in male rodents with physical, ischemic, and thermal testicular injuries. In this regard, melatonin deserves scientific investigations as a potential protective drug against rodent male infertility. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022354599.


Assuntos
Infertilidade Masculina , Melatonina , Humanos , Animais , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Sêmen , Testículo , Modelos Animais de Doenças , Infertilidade Masculina/patologia
8.
BMC Pharmacol Toxicol ; 23(1): 74, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175937

RESUMO

BACKGROUND: Ischemia-reperfusion (I/R) of the liver is a multifactorial condition that happens during transplantation and surgery. The deleterious effects of I/R result from the acute production of reactive oxygen species (ROS), which can trigger immediate tissue damage and induce a series of destructive cellular responses, including apoptosis organ failure and inflammation. The production of ROS in the I/R process can damage the antioxidant system and cause liver damage. Resveratrol has been shown to have antioxidant properties in several investigations. Here, we address the therapeutic effect of resveratrol on I/R-induced liver injury by focusing on unfolded protein response (UPR) signaling pathway. METHODS: Five minutes before reperfusion, resveratrol was injected into the tail vein of mice. They were ischemic for 1 h and then re-perfused for 3 h before being slaughtered (I/R). The activity of liver enzymes and the expression levels of genes involved in the unfolded protein response pathway were used to measure the hepatic damage. RESULTS: Our results revealed that the low dose of resveratrol (0.02 and 0.2 mg/kg) post-ischemic treatment significantly reduced the ALT and AST levels. In addition, compared with the control group, the expression of UPR pathway genes GRP78, PERK, IRE1α, CHOP, and XBP1 was significantly reduced in the resveratrol group. In the mice that received lower doses of resveratrol (0.02 and 0.2 mg/kg), the histopathological changes induced by I/R were significantly improved; however, the highest dose (2 mg/kg) of resveratrol could not significantly protect and solve the I/R damage. CONCLUSION: The findings of this study suggest that hepatic ischemia occurs after liver transplantation and that receiving low-dose resveratrol treatment before reperfusion may promote graft survival through inhibition of UPR arms, especially PERK and IRE1α.


Assuntos
Hepatopatias , Transplante de Fígado , Traumatismo por Reperfusão , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Sobrevivência Celular , Endorribonucleases/farmacologia , Endorribonucleases/uso terapêutico , Isquemia/tratamento farmacológico , Isquemia/patologia , Fígado , Hepatopatias/patologia , Camundongos , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Resveratrol/farmacologia , Resveratrol/uso terapêutico
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166512, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931405

RESUMO

The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.


Assuntos
Epigênese Genética , Neoplasias Gastrointestinais , Autofagia , Proliferação de Células , Metilação de DNA , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Humanos
10.
Pharmacol Ther ; 237: 108171, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35304223

RESUMO

Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Autofagia , Barreira Hematoencefálica/patologia , Reposicionamento de Medicamentos , Humanos
11.
Bioengineered ; 12(2): 10401-10419, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34723746

RESUMO

As a currently identified small non-coding RNAs (ncRNAs) category, the PIWI-interacting RNAs (piRNAs) are crucial mediators of cell biology. The human genome comprises over 30.000 piRNA genes. Although considered a new field in cancer research, the piRNA pathway is shown by the existing evidence as an active pathway in a variety of different types of cancers with critical impacts on main aspects of cancer progression. Among the regulatory molecules that contribute to maintaining the dynamics of cancer cells, the P-element Induced WImpy testis (PIWI) proteins and piRNAs, as new players, have not been broadly studied so far. Therefore, the identification of cancer-related piRNAs and the assessment of target genes of piRNAs may lead to better cancer prevention and therapy strategies. This review articleaimed to highlight the role and function of piRNAs based on existing data. Understanding the role of piRNA in cancer may provide perspectives on their applications as particular biomarker signature in diagnosis in early stage, prognosis and therapeutic strategies.


Assuntos
Neoplasias/genética , RNA Interferente Pequeno/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Bases de Dados Genéticas , Inativação Gênica , Humanos , Retroelementos/genética
12.
Arch Immunol Ther Exp (Warsz) ; 69(1): 26, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34536148

RESUMO

Adjuvant chemotherapy with 5-fluorouracil (5-FU) does not improve survival of patients suffering from a form of colorectal cancer (CRC) characterized by high level of microsatellite instability (MSI-H). Given the importance of autophagy and multi-drug-resistant (MDR) proteins in chemotherapy resistance, as well as the role of casein kinase 1-alpha (CK1α) in the regulation of autophagy, we tested the combined effect of 5-FU and CK1α inhibitor (D4476) on HCT116 cells as a model of MSI-H colorectal cancer. To achieve this goal, the gene expression of Beclin1 and MDR genes, ABCG2 and ABCC3 were analyzed using quantitative real-time polymerase chain reaction. We used immunoblotting to measure autophagy flux (LC3, p62) and flow cytometry to detect apoptosis. Our findings showed that combination treatment with 5-FU and D4476 inhibited autophagy flux. Moreover, 5-FU and D4476 combination therapy induced G2, S and G1 phase arrests and it depleted mRNA of both cell proliferation-related genes and MDR-related genes (ABCG2, cyclin D1 and c-myc). Hence, our data indicates that targeting of CK1α may increase the sensitivity of HCT116 cells to 5-FU. To our knowledge, this is the first description of sensitization of CRC cells to 5-FU chemotherapy by CK1α inhibitor.


Assuntos
Caseína Quinase Ialfa , Neoplasias Colorretais , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Humanos , Instabilidade de Microssatélites , Repetições de Microssatélites
13.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206057

RESUMO

The COVID-19 pandemic is caused by the 2019-nCoV/SARS-CoV-2 virus. This severe acute respiratory syndrome is currently a global health emergency and needs much effort to generate an urgent practical treatment to reduce COVID-19 complications and mortality in humans. Viral infection activates various cellular responses in infected cells, including cellular stress responses such as unfolded protein response (UPR) and autophagy, following the inhibition of mTOR. Both UPR and autophagy mechanisms are involved in cellular and tissue homeostasis, apoptosis, innate immunity modulation, and clearance of pathogens such as viral particles. However, during an evolutionary arms race, viruses gain the ability to subvert autophagy and UPR for their benefit. SARS-CoV-2 can enter host cells through binding to cell surface receptors, including angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1). ACE2 blockage increases autophagy through mTOR inhibition, leading to gastrointestinal complications during SARS-CoV-2 virus infection. NRP1 is also regulated by the mTOR pathway. An increased NRP1 can enhance the susceptibility of immune system dendritic cells (DCs) to SARS-CoV-2 and induce cytokine storm, which is related to high COVID-19 mortality. Therefore, signaling pathways such as mTOR, UPR, and autophagy may be potential therapeutic targets for COVID-19. Hence, extensive investigations are required to confirm these potentials. Since there is currently no specific treatment for COVID-19 infection, we sought to review and discuss the important roles of autophagy, UPR, and mTOR mechanisms in the regulation of cellular responses to coronavirus infection to help identify new antiviral modalities against SARS-CoV-2 virus.


Assuntos
Autofagia , COVID-19/patologia , Neuropilina-1/metabolismo , Resposta a Proteínas não Dobradas , Antivirais/farmacologia , Autofagia/efeitos dos fármacos , COVID-19/virologia , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
14.
BMC Nephrol ; 22(1): 162, 2021 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-33933022

RESUMO

BACKGROUND: Monosodium glutamate (MSG) is frequently consumed as a flavor enhancer or food additive. Possible damages induced by MSG effects on some organs have been stated in experimental animal models. The aim of the present study was to evaluate the protective effects of L-carnitine (L-ca) on the renal tissue in MSG-Induced Rats. METHODS: In this regard, 60 male rats were randomly divided into six groups (n = 10/each): 1 (Control); 2 (sham); 3 (L-carnitine 200 mg/kg b.w); 4 (MSG 3 g/kg b.w); 5 (MSG + L-carnitine 100 mg/kg); and 6 (MSG + L-carnitine 200 mg/kg). After 6 months, the rats were sacrificed, the blood sample collected and the kidneys harvested for evaluation of biochemical analytes, genes expression, and histopathological changes. RESULTS: MSG significantly increased the serum level of MDA, BUN, creatinine, uric acid and renal Caspase-9, NGAL and KIM-1 expression, but it decreased the serum activity also renal expression of SOD, catalase, GPX, and Bcl-2 expression compared to the control group. Treatment with L-ca significantly reduced the serum BUN, creatinine, uric acid and MDA level and increased catalase, GPX and SOD compared to the MSG group. However, only administration of L-ca 200 significantly decreased the caspase-9, NGAL and KIM-1; also, it increased the Bcl-2 expression in the kidney compared to the MSG group. CONCLUSIONS: Our findings indicated that L-carnitine had a major impact on the cell protection and might be an effective therapy in ameliorating the complications of the kidney induced by MSG via its antioxidant and anti-apoptotic properties.


Assuntos
Antioxidantes/farmacologia , Carnitina/farmacologia , Caspase 9/efeitos dos fármacos , Rim/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Glutamato de Sódio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Cálcio/sangue , Caspase 9/genética , Catalase/sangue , Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/sangue , Humanos , Rim/enzimologia , Rim/patologia , Masculino , Malondialdeído/sangue , Fósforo/sangue , Proteínas Proto-Oncogênicas c-bcl-2/genética , Distribuição Aleatória , Ratos Sprague-Dawley , Superóxido Dismutase/sangue
15.
Am J Respir Cell Mol Biol ; 64(1): 29-38, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915643

RESUMO

Lung cells are constantly exposed to various internal and external stressors that disrupt protein homeostasis. To cope with these stimuli, cells evoke a highly conserved adaptive mechanism called the unfolded protein response (UPR). UPR stressors can impose greater protein secretory demands on the endoplasmic reticulum (ER), resulting in the development, differentiation, and survival of these cell types to meet these increasing functional needs. Dysregulation of the UPR leads to the development of the disease. The UPR and ER stress are involved in several human conditions, such as chronic inflammation, neurodegeneration, metabolic syndrome, and cancer. Furthermore, potent and specific compounds that target the UPR pathway are under development as future therapies. The focus of this review is to thoroughly describe the effects of both internal and external stressors on the ER in asthma. Furthermore, we discuss how the UPR signaling pathway is activated in the lungs to overcome cellular damage. We also present an overview of the pathogenic mechanisms, with a brief focus on potential strategies for pharmacological interventions.


Assuntos
Asma/patologia , Neoplasias/patologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Transdução de Sinais/fisiologia
16.
Life (Basel) ; 11(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374938

RESUMO

Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to various external and internal stressors, which may cause considerable protein secretion pressure on the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism, known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases, and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR pathway are being considered as potential therapies. This review focuses on the impact of both external and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the control of cellular damage and specifically highlights the potential involvement of non-coding RNAs in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing to IPF and COPD, and promising pharmacological intervention strategies, are also presented.

17.
Cells ; 9(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105603

RESUMO

Glioblastoma (GBM) is the most prevalent malignant primary brain tumor with a very poor survival rate. Temozolomide (TMZ) is the common chemotherapeutic agent used for GBM treatment. We recently demonstrated that simvastatin (Simva) increases TMZ-induced apoptosis via the inhibition of autophagic flux in GBM cells. Considering the role of the unfolded protein response (UPR) pathway in the regulation of autophagy, we investigated the involvement of UPR in Simva-TMZ-induced cell death by utilizing highly selective IRE1 RNase activity inhibitor MKC8866, PERK inhibitor GSK-2606414 (PERKi), and eIF2α inhibitor salubrinal. Simva-TMZ treatment decreased the viability of GBM cells and significantly increased apoptotic cell death when compared to TMZ or Simva alone. Simva-TMZ induced both UPR, as determined by an increase in GRP78, XBP splicing, eukaryote initiation factor 2α (eIF2α) phosphorylation, and inhibited autophagic flux (accumulation of LC3ß-II and inhibition of p62 degradation). IRE1 RNase inhibition did not affect Simva-TMZ-induced cell death, but it significantly induced p62 degradation and increased the microtubule-associated proteins light chain 3 (LC3)ß-II/LC3ß-I ratio in U87 cells, while salubrinal did not affect the Simva-TMZ induced cytotoxicity of GBM cells. In contrast, protein kinase RNA-like endoplasmic reticulum kinase (PERK) inhibition significantly increased Simva-TMZ-induced cell death in U87 cells. Interestingly, whereas PERK inhibition induced p62 accumulation in both GBM cell lines, it differentially affected the LC3ß-II/LC3ß-I ratio in U87 (decrease) and U251 (increase) cells. Simvastatin sensitizes GBM cells to TMZ-induced cell death via a mechanism that involves autophagy and UPR pathways. More specifically, our results imply that the IRE1 and PERK signaling arms of the UPR regulate Simva-TMZ-mediated autophagy flux inhibition in U251 and U87 GBM cells.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sinvastatina/farmacologia , Temozolomida/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Sinergismo Farmacológico , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Glioblastoma , Humanos , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Temozolomida/uso terapêutico
18.
J Food Biochem ; 44(8): e13252, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515037

RESUMO

Today, plant-based therapies have been attracted attention to overcome diabetes complications. This study was an attempt to evaluate whether antidiabetic and nephroprotective effects of Stevia Rebaudiana Bertoni (SRB) can be exerted via upregulation of GLUT-4, SNAP23, and Stx4 in skeletal muscles or modulation of AQP2 mRNA expression and antioxidant signaling pathway activity (Nrf2/Keap1) in kidneys. To achieve this aim, diabetes was induced via STZ-nicotinamide (STZ-NA). Diabetes increased the level of Blood Urea Nitrogen (BUN), serum creatinine, Fasting Blood Sugar (FBS), and Keap1 mRNA expression, which was coincide with reduction in mRNA levels of Nrf2, GLUT4, SNAP23, and Stx4. SRB and metformin compensate mentioned variables. However, SRB extract was more effective than metformin to increase the levels of GLUT4 and Nrf2 mRNA. It seems that SRB might attenuate the diabetic complications via manipulating the glucose uptake components in peripheral tissues and might exert the nephroprotective effects by modulation of AQP2, and Nrf2/Keap1 mRNA expression. PRACTICAL APPLICATIONS: Synthetic antidiabetic drugs have been only partially successful in controlling the diabetic complications. Moreover, use of these drugs is associated with a number of adverse effects. Over the past few years, a renewed attention has been paid to the prevention and treatment of diabetes using medicinal plants and functional foods. SRB that have been known as natural sweetener for centuries, is a such natural agent that has high source of various phytochemicals with antidiabetic, renal protective, antitumor, and antioxidant properties. In the current study, possible molecular mechanisms of insulin-mimetic and nephroprotective effects of SRB extract was evaluated in diabetic rats. Due to powerful antihyperglycemic and nephroprotective effects of SRB extract that were showed in this study and previous studies, hence the fact that SRB is to be highlighted for future research as a new therapeutic agent for diabetes.


Assuntos
Diabetes Mellitus Experimental , Stevia , Animais , Antioxidantes , Aquaporina 2 , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Transdução de Sinais
19.
Biotechnol Adv ; 38: 107409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31220568

RESUMO

Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.


Assuntos
Triterpenos/química , Antibacterianos , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA