Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38682739

RESUMO

In photodynamic therapy (PDT) treatment, heavy-atom-free photosensitizers (PSs) are a great source of singlet oxygen photosensitizer. Reactive oxygen species (ROS) are produced by an energy transfer from the lowest energy triplet excited state to the molecular oxygen of cancer cells. To clarify the photophysical characteristics in the excited states of a few experimentally identified thionated (>C=S) molecules and their oxygenated congeners (>C=O), a quantum chemical study is conducted. This study illustrates the properties of the excited states in oxygen congeners that render them unsuitable for PDT treatment. Concurrently, a hierarchy is presented based on the utility of the lowest-energy triplet excitons of thionated compounds. Their non-radiative decay rates are calculated for reverse-ISC and inter-system crossover (ISC) processes. In addition, the vibronic importance of C=O and C=S bonds is clarified by the computation of the Huang-Rhys factor, effective vibrational mode, and reorganization energy inside the Marcus-Levich-Jörtner system. ROS generation in thionated PSs exceeds their oxygen congeners as kf ≪ kISC, where radiative decay rate is designated as kf. As a result, the current work offers a calculated strategy for analyzing the effectiveness of thionated photosensitizers in PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Oxigênio Singlete , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/química , Teoria Quântica
2.
Angew Chem Int Ed Engl ; 62(27): e202305462, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129995

RESUMO

The fixing of N2 to NH3 is challenging due to the inertness of the N≡N bond. Commercially, ammonia production depends on the energy-consuming Haber-Bosch (H-B) process, which emits CO2 while using fossil fuels as the sources of hydrogen and energy. An alternative method for NH3 production is the electrochemical nitrogen reduction reaction (NRR) process as it is powered by renewable energy sources. Here, we report a tiara-like nickel-thiolate cluster, [Ni6 (PET)12 ] (where, PET=2-phenylethanethiol)] as an efficient electro-catalyst for the electrochemical NRR at ambient conditions. Ammonia (NH3 : 16.2±0.8 µg h-1 cm-2 ) was the only nitrogenous product over the potential of -2.3 V vs. Fc + /Fc with a Faradaic efficiency of 25%±1.7. Based on theoretical calculations, NRR by [Ni6 (PET)12 ] proceeds through both the distal and alternating pathways with an onset potential of -1.84 V vs. RHE (i.e., -2.46 V vs. Fc + /Fc ) which corroborates with the experimental findings.

3.
Nanoscale ; 15(1): 321-336, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484694

RESUMO

Cyclotides are backbone-cyclized peptides of plant origin enriched with disulfide bonds, having exceptional stability towards thermal denaturation and proteolytic degradation. They have a plethora of activities like antibacterial, antifungal, anti-tumor and anti-HIV properties predominantly owing to their selective interaction with certain phospholipids, thereby leading to the disruption of cellular membranes. On the other hand, low-dimensional materials like graphene and hexagonal boron nitride (h-BN) are also known to show membrane-proliferating activities through lipid extraction. A plausible and more effective antibacterial, anti-tumor and antifungal agent would be a composite of these 2D materials and cyclotides, provided the structures of the peptides remain unperturbed upon adsorption and interaction. In this study, classical molecular dynamics simulations are performed to understand the nature of adsorption of cyclotides belonging to different families on graphene and h-BN and analyze the resulting structural changes. It is revealed that, due to their exceptional structural stability, cyclotides maintain their structural integrity upon adsorption on the 2D materials. In addition, the aggregated states of the cyclotides, which are ubiquitous in plant organs, are also not disrupted upon adsorption. Extensive free energy calculations show that the adsorption strength of the cyclotides is moderate in comparison to those of other similar-sized biomolecules, and the larger the size of the aggregates, the weaker the binding of individual peptides with the 2D materials, thereby leading to their lower release times from the materials. It is predicted that graphene and h-BN may safely be used for the preparation of composites with cyclotides, which in turn may be envisaged to be probable candidates for manufacturing next-generation bionano agents for agricultural, antibacterial and therapeutic applications.


Assuntos
Ciclotídeos , Grafite , Humanos , Ciclotídeos/química , Ciclotídeos/uso terapêutico , Sequência de Aminoácidos , Simulação de Dinâmica Molecular , Plantas
4.
Inorg Chem ; 61(24): 9055-9062, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35668390

RESUMO

Iron carbonyls are known to form 18-electron complexes like Fe(CO)5, Fe2(CO)9, and Fe3(CO)12 having terminal or bridged Fe-CO bonding. Based on genetic algorithm-assisted density functional theory (DFT) calculations, it is predicted that at pressures above 2 GPa, iron tetracarbonyl, Fe(CO)4, attains a square-planar geometry with a 16-electron count. Compression overcomes the [Ar]4s23d6 (S = 2) → [Ar]4s03d8 (S = 0) excitation energy to stabilize a closed-shell Fe(CO)4 with a d8-configuration. Strong σ(4CO) → Fe (dx2-y2) bonding along with Fe(dxz, dyz) and Fe(dxy) → π (CO)4* back-bonding assists the formation of square-planar Fe(CO)4 under pressure. Compression progressively flattens and destabilizes the ambient pressure C2v structure of Fe(CO)4, and beyond 2 GPa, it undergoes a sharp C2v → D4h transition with ΔVunit-cell = 2.1% and trans-θ(OC-Fe-CO) = 180°. Realizing a square-planar geometry in a four-coordinated Fe-carbonyl complex shows the rich prospects of the new chemistry under pressure.

5.
Chem Sci ; 13(3): 704-712, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35173935

RESUMO

Benzene imine (1) ⇌ 1H-azepine (2) isomerization occurs through sequential valence and endo-exo isomerism. Quantum chemical and quasiclassical trajectory (QCT) simulations reveal the coupled reaction pathway - ring-expansion followed by N-inversion to the most stable isomer, exo-1H-azepine (Exo-2). Direct-dynamics produce a mixture of endo- and exo-1H-azepine stereoisomers and govern the endo-1H-azepine (Endo-2) ⇌ exo-1H-azepine (Exo-2) ratio. Exo-2 is computationally identified as the most stable product while Endo-2 is fleetingly stable with a survival time (S T) ∼50 fs. N-Methyl substitution exclusively results in an exo-1-methyl-1H-azepine isomer. F-substitution at the N-site increases the barrier for N-inversion and alters the preference by stabilizing Endo-2. Interestingly, the exo-1-fluoro-1H-azepine (minor product) is formed through bifurcation via non-statistical dynamics. A highly concaved Arrhenius plot for 1a → 2a highlights the influence of heavy-atom tunneling on valence isomerism, particularly at low temperatures. Heavy-atom tunneling also results in a normal N-H(D) secondary KIE above 100 K even though the increase in hybridization from sp2 to sp3 at nitrogen should cause an inverse KIE classically.

6.
Eur J Med Chem ; 229: 113995, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34802835

RESUMO

Cooperative disruption of Watson-Crick hydrogen bonds, as well as base-destacking, is shown to be triggered by a quinoxaline-based small molecule consisting of an N,N-dimethylaminopropyl tether, and a para-substituted benzyl moiety. This events lead to superstructure formation and DNA condensation as evident from biophysical experiments and classical molecular dynamics simulations. The DNA superstructure formation by mono-quinoxaline derivatives is highly entropically favored and predominantly driven by hydrophobic interactions. Furthermore, oversupercoiling of DNA and base-destacking cumulatively induces histone eviction from in-vitro assembled nucleosomes at lower micromolar concentrations implicating biological relevance. The DNA structural modulation and histone eviction capacity of the benzyl para-substituents are in the order: -I > -CF3> -Br > -Me > -OMe > -OH, which is largely guided by the polarity of benzyl para-substituent and the resulting molecular topology. The most hydrophobic derivative 3c with para-iodo benzyl moiety causes maximal disruption of base pairing and generation of superstructures. Both these events gradually diminish as the polarity of the benzyl para-substituent increases. On the other hand, quinoxaline derivatives having heterocyclic ring instead of benzyl ring, or in the absence of N,N-dimethylamino head-group, is incapable of inducing any DNA structural change and histone eviction. Further, the quinoxaline compounds displayed potent anticancer activities against different cancer cell lines which directly correlates with the hydrophobic effects of the benzyl para-substituents. Overall, the present study provides new insights into the mechanistic approach of DNA structural modulation driven histone eviction guided by the hydrophobicity of synthesized compounds leading to cellular cytotoxicity towards cancer cells.


Assuntos
DNA/química , Histonas/metabolismo , Quinoxalinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Conformação Molecular , Teoria Quântica , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Termodinâmica
7.
Chem Commun (Camb) ; 57(94): 12695-12698, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34782906

RESUMO

A rationally designed amphiphilic poly(aryl ether)-based dendrimer self-assembles into nanomicelles and exhibits tunable morphology upon varying the hydrophilic chain length. The 30 nm-sized dendrimer nanomicelles successfully entrapped Doxorubicin, demonstrated the sustained release of Doxorubicin and can successfully penetrate cancer cells through caveolae-dependent endocytosis, compared to the free drug.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Éteres/química , Nanopartículas/química , Polímeros/química , Tensoativos/química , Animais , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose/efeitos dos fármacos , Éteres/síntese química , Humanos , Células MCF-7 , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Camundongos , Micelas , Estrutura Molecular , Células NIH 3T3 , Polímeros/síntese química , Tensoativos/síntese química
8.
Soft Matter ; 17(30): 7168-7176, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34263281

RESUMO

This study demonstrates how the self-assembly pattern of two different and isomeric peptide-appended core-substituted naphthalenediimides (NDIs) affects the modulation of their optoelectronic properties. Two isomeric peptide-attached NDIs were synthesized, purified and characterized. Interchanging the position of attachment of the peptide units and the alkyl chains in the NDI has altered the respective self-assembling patterns of these isomeric molecules in the aggregated states. The isomer having a peptide moiety in the core position and the alkyl chain in the imide position (compound N1) forms face to face stacking or 'H' aggregates in aliphatic solvents including n-hexane, and n-decane, whereas compound N2, in which the peptide moiety is at the imide position and the alkyl chain is attached at the core position of NDI exhibits edge to edge stacking or J aggregates under the same conditions as it is evident from their UV-vis studies. The H aggregated species (obtained from N1) show inter-connected nanofibers, whereas the J aggregated species (obtained from N2) exhibit the morphology of helical nanoribbons. FT-IR and X-ray diffraction studies are in favor of the same aggregation behavior. The individual packing patterns of these two peptide-based isomers have a direct impact on their respective electrical conductivity. Interestingly, the H aggregated species shows 100 times greater current conductivity than that of the J aggregate. Moreover, it is only the H aggregated species that exhibits a photocurrent, and no such photocurrent response is observed with the J aggregates. Computational studies also support that different types of aggregation patterns are formed by these two isomeric molecules in the same solvent system. This unique example of tuning of optoelectronic behavior holds future promise for the development of new peptide-conjugated π-functional materials.


Assuntos
Imidas , Naftalenos , Peptídeos , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Nanoscale Adv ; 3(13): 3770-3779, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133027

RESUMO

The quest for developing next-generation non-precious electrocatalysts has risen in recent times. Herein, we have designed and developed a low cost electrocatalyst by a ligand-assisted synthetic strategy in an aqueous medium. An oxalate ligand-assisted non-oxide electrocatalyst was developed by a simple wet-chemical technique for alkaline water oxidation application. The synthetic parameters for the preparation of nickel-cobalt oxalate (Ni2.5Co5C2O4) were optimized, such as the metal precursor (Ni/Co) ratio, oxalic acid amount, reaction temperature, and time. Microstructural analysis revealed a mesoporous block-like architecture for nickel-cobalt oxalate (Ni2.5Co5C2O4). The required overpotential of Ni2.5Co5C2O4 for the alkaline oxygen evolution reaction (OER) was found to be 330 mV for achieving 10 mA cmgeo -2, which is superior to that of NiC2O4, CoC2O4, NiCo2O4 and the state-of-the-art RuO2. The splendid performance of Ni2.5Co5C2O4 was further verified by its low charge transfer resistance, impressive stability performance, and 87% faradaic efficiency in alkaline medium (pH = 14). The improved electrochemical activity was further attributed to double layer capacitance (C dl), which indefinitely divulged the inferiority of NiCo2O4 compared to Ni2.5Co5C2O4 for the alkaline oxygen evolution reaction (OER). The obtained proton reaction order (ρ RHE) was about 0.80, thus indicating the proton decoupled electron transfer (PDET) mechanism for OER in alkaline medium. Post-catalytic investigation revealed the formation of a flake-like porous nanostructure, indicating distinct transformation in morphology during the alkaline OER process. Further, XPS analysis demonstrated complete oxidation of Ni2+ and Co2+ centres into Ni3+ and Co3+, respectively under high oxidation potential, thereby indicating active site formation throughout the microstructural network. Additionally, from BET-normalised LSV investigation, the intrinsic activity of Ni2.5Co5C2O4 was also found to be higher than that of NiCo2O4. Finally, Ni2.5Co5C2O4 delivered a TOF value of around 3.28 × 10-3 s-1, which is 5.56 fold that of NiCo2O4 for the alkaline OER process. This report highlights the unique benefit of Ni2.5Co5C2O4 over NiCo2O4 for the alkaline OER. The structure-catalytic property relationship was further elucidated using density functional theory (DFT) study. To the best of our knowledge, nickel-cobalt oxalate (Ni2.5Co5C2O4) was introduced for the first time as a non-precious non-oxide electrocatalyst for alkaline OER application.

10.
Chem Commun (Camb) ; 55(10): 1506-1509, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30648173

RESUMO

An acyclic tetrapodal receptor (L4+-I)(4PF6)4- comprised of four 2-iodo-imidazolium motifs showed moderate to strong binding of halides through halogen bonding interactions in organic and aqueous media, with these binding levels established by performing isothermal titration calorimetry studies. Importantly, single crystals suitable for X-ray diffraction studies were obtained from both water and an acetonitrile-water binary solvent mixture, and exhibited halogen bonding interactions in the solid state.

11.
J Phys Chem B ; 121(32): 7621-7632, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28723153

RESUMO

The reactivity of CO3·- and NO2· radicals toward six amino acid side chains namely, cysteine (Cys), methionine (Met), phenylalanine (Phe), tyrosine (Tyr), histidine (His), and tryptophan (Trp), has been explored using state-of-art density functional theory (DFT) and transition state theory (TST). Three reaction mechanisms, namely hydrogen atom abstraction (HAT), radical adduct formation (RAF), and single electron transfer (SET), have been considered for detailed study. While CO3·- radical is highly reactive toward majority of amino acids, the reactivity of NO2· radical is limited. The CO3·- radical creates oxidative damage to amino acid residues predominantly via HAT mechanism with moderate to high rate constant. Kinetic data suggest that tryptophan and tyrosine moiety possess the highest reactivity while the phenylalanine furnishes slow reaction. On the other hand, NO2· radical cannot produce direct damage toward most of the amino acids except tryptophan and histidine. The NO2· radical reacts exclusively by SET mechanism with 6.01 × 106 M-1 s-1 and 4.69 × 102 M-1 s-1 rate constant for Trp and His, respectively. Therefore, the CO3·- radical may cause severe damage to amino acid side chains during oxidative stress conditions, whereas the NO2· radical is mostly inert. Moreover, the reaction of CO3·- and NO2· radicals with amino acid radical intermediates generate variety of oxidation and nitro products which explain the formation of different experimentally characterized biomarkers during oxidative stress.


Assuntos
Aminoácidos/química , Carbonatos/química , Óxido Nítrico/química , Aminoácidos/metabolismo , Cisteína/química , Transporte de Elétrons , Radicais Livres/química , Histidina/química , Hidrogênio/química , Metionina/química , Fenilalanina/química , Enxofre/química , Triptofano/química , Tirosina/química
12.
Nanoscale ; 9(13): 4419-4429, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28300263

RESUMO

Three different types of fluorescent gold clusters (namely blue, green and red emitting) have been prepared from a gold precursor (chloroauric acid) under moderate conditions in aqueous medium. A cysteine containing dipeptide has been used for the formation of these quantum clusters as this peptide molecule contains a thiol group in the side chain to cap these nascently formed clusters and the free amino and carboxylic moieties assist in water solubility. Thus, the clusters are also environmentally friendly as the capped peptide is made up of only naturally occurring protein amino acids. These clusters have been well characterized by using UV-visible, fluorescence, X-ray photoelectron spectroscopy (XPS)spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and ultrahigh resolution field emission gun-transmission electron microscopy (UHR-FEG-TEM). Arrangements of gold atoms and their interaction with the corresponding ligands in three different fluorescent clusters have been predicted computationally. The excited state behavior of three different clusters has also been studied using time dependent density functional theory (TD-DFT). Time correlated single photon counting (TCSPC) and computational studies suggest intersystem crossing (S1 → T1) in the case of red-emitting Au23 clusters. Interestingly, these gold clusters exhibit semiconducting and photoswitching properties (Ion/Ioff), which are shown to be controlled by varying the size of these clusters. This holds future promise of using these gold cluster based nanomaterials for optoelectronic applications.

13.
J Phys Chem B ; 121(4): 825-834, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28055206

RESUMO

Confined molecular chambers such as macrocycle bridged E1-H···H-E2 (E1(E2) = Si(Si), 1) exhibit rare ultrashort H···H nonbonded contacts (d(H···H) = 1.56 Å). In this article, on the basis of density functional theory and ab initio molecular dynamics simulations, we propose new molecular motifs where d(H···H) can be reduced to 1.44 Å (E1(E2) = Si(Ge), 3). Further tuning the structure of the macrocycle by replacing the bulky phenyl groups by ethylenic spacers and substitution of the H-atoms by -CN groups makes the cavity more compact and furnishes even shorter d(H···H) = 1.38 Å (E1(E2) = Ge(Ge), 8). These unusually close H···H nonbonded contacts originate from the strong attractive noncovalent interactions between them, which are evident from various computational indicators, namely, NCI, Wiberg bond index, relaxed force constant, quantum theory of atoms in molecules, and natural orbitals for chemical valence combined with the extended transition state method analyses. Substantial stabilization of the in,in-configuration (exhibiting short H···H contacts) compared with the out,out-configuration (by ∼5.7 kcal/mol) and statistically insignificant fluctuations in ⟨d(H···H)⟩ and ⟨θav⟩(θ(E1(E2)-H···H = 152°) at room temperature confirm that the ultrashort H···H distances in these molecules are thermodynamically stable and would be persistent under ambient experimental conditions.

14.
Phys Chem Chem Phys ; 17(45): 30398-403, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26508537

RESUMO

Fluorescence associated with J-aggregated naphthalenediimides (NDIs) is common. However, in this study an NDI based synthetic peptide molecule is found to form a fluorescent H-aggregate in a chloroform (CHCl3)-methylcyclohexane (MCH) mixture. An attempt has been made to explain the unusual fluorescence property of this H-aggregated NDI derivative. Time correlated single photon counting (TCSPC) shows that the average lifetime of the NDI based molecule is on the order of a few nanoseconds. It is revealed from the computational study that the transition from the second exited state (S2) to the ground energy state (S0) is responsible for the fluorescence as S1 is a dark state. Such rare violation of Kasha's rule accounts for the unusual fluorescence properties of this type of NDI molecule in the H-aggregated state.


Assuntos
Fluorescência , Imidas/química , Naftalenos/química , Peptídeos/química , Teoria Quântica , Estrutura Molecular , Processos Fotoquímicos
15.
Nanoscale ; 7(5): 1912-20, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25529745

RESUMO

Blue, green, orange-red, red and NIR emitting gold quantum clusters have been prepared in aqueous media by using a bioactive peptide glutathione (reduced) at physiological pH. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analyses show that the core structure sizes of the five different gold clusters are Au7 (blue), Au16 (green), Au19 (orange-red), Au21 (red) and Au22 (NIR). The photo-stability and pH-stability of these quantum clusters have been measured, and these are photo-stable against continuous UV irradiation for a few hours. They also exhibit moderate to good pH-stability within the pH range of 5-12.5. A computational study reveals the organisation of gold atoms in the thiolate-protected blue quantum cluster and its several structural parameters, including the mode of interaction of ligand molecules with Au atoms in the Au7 cluster. Interestingly, it has been found that NIR emitting gold quantum cluster can easily be internalized into the adenocarcinomic human alveolar basal epithelial cell line (A549 cell line). Moreover, a MTT assay indicates that our NIR emitting gold quantum cluster show very low cytotoxicy to A549 cancer cells.


Assuntos
Ouro/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/química , Ouro/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Teoria Quântica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Raios Ultravioleta
16.
J Chem Phys ; 126(14): 144710, 2007 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-17444735

RESUMO

The hole and electron mobilities of the polymorphs of benzene and naphthalene crystals are estimated through quantum chemical calculations. The reorganization energy (lambda) and the charge-transfer matrix elements (Hmn) calculated for the two molecules reveal that these crystals can be used for dual applications, for both hole and electron conductance. The electron mobilities are five to eight times more than the hole mobilities for benzene while for naphthalene, the hole mobilities are almost an order magnitude more than the electron mobilities. The transfer matrices for both hole and electron conductance decrease monotonically with increase in the intermolecular distances. Calculations for various unique stacked dimers as determined from the radial distribution functions in both the crystals for the two molecules show strong dependence on the orientations of the rings and for similar intermolecular separations; Hmnhole is larger than Hmnelectron. The crystal mobilities are calculated from the weighted average over all the unique pair of molecules. The overall preference in a crystal for hole or electron mobility depends on the mutual competition of lambdahole/lambdaelectron and Hmnhole/Hmnelectron. From our microscopic understanding of essential parameters, specific dimers are identified from the crystalline solids of the two polymorphs and experimental strategies are suggested to enrich such pairs in aggregates for enhancing mobilities for these organic solids.

17.
J Phys Chem A ; 109(51): 11647-9, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16366612

RESUMO

Quantum chemical calculations as well as crystallographic analyses show that the Ni(n) rings in the tiara Ni thiolates, [NiS2]n and [Ni(SR)2]n (n = 3-6), have highly symmetric polygonal structures. We find that such structural features primarily arise from the effective delocalization of the d-orbital electrons across the Ni(n) rings leading to bond length equalization and thereby aromaticity. We introduce the d-orbital aromaticity for the first time to explain the experimentally observed polygonal structures of these cyclic metal rings bridged by thiol linkages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA