Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(4): e0250582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909677

RESUMO

Micro-endomyocardial biopsy (micro-EMB) is a novel catheter-based biopsy technique, aiming to increase flexibility and safety compared to conventional EMB. The technique was developed and evaluated in healthy swine. Therefore, the ability to detect disease related tissue changes could not be evaluated. The aim of the present pilot study was to investigate the ability to detect disease related gene expression changes using micro-EMB. Myocardial infarction was induced in three swine by coronary artery balloon occlusion. Micro-EMB samples (n = 164) were collected before, during, and after occlusion. RNA-sequencing was performed on 85 samples, and 53 of these were selected for bioinformatic analysis. A large number of responding genes was detected from the infarcted area (n = 1911). The early responding genes (n = 1268) were mostly related to apoptosis and inflammation. There were fewer responding genes two days after infarction (n = 6), which were related to extra-cellular matrix changes, and none after 14 days. In contrast to the infarcted area, samples harvested from a non-infarcted myocardial region showed considerably fewer regulated genes (n = 33). Deconvolution analysis, to estimate the proportion of different cell types, revealed a higher proportion of fibroblasts and a reduced proportion of cardiomyocytes two days after occlusion compared to baseline (p < 0.02 and p < 0.01, respectively. S5 File). In conclusion, this pilot study demonstrates the capabilities of micro-EMB to detect local gene expression responses at an early stage after ischemia, but not at later timepoints.


Assuntos
Biópsia , Inflamação/genética , Infarto do Miocárdio/diagnóstico , Miocárdio/metabolismo , Animais , Apoptose/genética , Cateterismo Cardíaco , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Inflamação/diagnóstico , Inflamação/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Projetos Piloto , Suínos
2.
Diabetes ; 70(7): 1486-1497, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33863803

RESUMO

Selective hepatic insulin resistance is a feature of obesity and type 2 diabetes. Whether similar mechanisms operate in white adipose tissue (WAT) of those with obesity and to what extent these are normalized by weight loss are unknown. We determined insulin sensitivity by hyperinsulinemic euglycemic clamp and insulin response in subcutaneous WAT by RNA sequencing in 23 women with obesity before and 2 years after bariatric surgery. To control for effects of surgery, women postsurgery were matched to never-obese women. Multidimensional analyses of 138 samples allowed us to classify the effects of insulin into three distinct expression responses: a common set was present in all three groups and included genes encoding several lipid/cholesterol biosynthesis enzymes; a set of obesity-attenuated genes linked to tissue remodeling and protein translation was selectively regulated in the two nonobese states; and several postobesity-enriched genes encoding proteins involved in, for example, one-carbon metabolism were only responsive to insulin in the women who had lost weight. Altogether, human WAT displays a selective insulin response in the obese state, where most genes are normalized by weight loss. This comprehensive atlas provides insights into the transcriptional effects of insulin in WAT and may identify targets to improve insulin action.


Assuntos
Tecido Adiposo Branco/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos
3.
Sci Rep ; 10(1): 8029, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415191

RESUMO

Endomyocardial biopsy is a valuable tool in cardiac diagnostics but is limited by low diagnostic yield and significant complication risks. Meanwhile, recent developments in transcriptomic and proteomic technologies promise a wealth of biological data from minimal tissue samples. To take advantage of the minimal tissue amount needed for molecular analyses, we have developed a sub-millimeter endovascular biopsy device, considerably smaller than current clinical equipment, and devised a low-input RNA-sequencing protocol for analyzing small tissue samples. In in vivo evaluation in swine, 81% of biopsy attempts (n = 157) were successful. High quality RNA-sequencing data was generated from 91% of the sequenced cardiac micro-biopsy samples (n = 32). Gene expression signatures of samples taken with the novel device were comparable with a conventional device. No major complications were detected either during procedures or during 7 days' follow-up, despite acquiring a relatively large number of biopsies (median 30) in each animal. In conclusion, the novel device coupled with RNA-sequencing provides a feasible method to obtain molecular data from the myocardium. The method is less traumatic and has a higher flexibility compared to conventional methods, enabling safer and more targeted sampling from different parts of the myocardium.


Assuntos
Biópsia/métodos , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Biópsia/efeitos adversos , Biópsia/instrumentação , Biópsia/normas , Cateterismo Cardíaco , Biologia Computacional/métodos , Modelos Animais de Doenças , Imunofluorescência , Perfilação da Expressão Gênica , Ontologia Genética , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/prevenção & controle , Imuno-Histoquímica , Anotação de Sequência Molecular , Suínos
4.
Breast Cancer Res ; 22(1): 6, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931856

RESUMO

BACKGROUND: Distinguishing ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC) regions in clinical biopsies constitutes a diagnostic challenge. Spatial transcriptomics (ST) is an in situ capturing method, which allows quantification and visualization of transcriptomes in individual tissue sections. In the past, studies have shown that breast cancer samples can be used to study their transcriptomes with spatial resolution in individual tissue sections. Previously, supervised machine learning methods were used in clinical studies to predict the clinical outcomes for cancer types. METHODS: We used four publicly available ST breast cancer datasets from breast tissue sections annotated by pathologists as non-malignant, DCIS, or IDC. We trained and tested a machine learning method (support vector machine) based on the expert annotation as well as based on automatic selection of cell types by their transcriptome profiles. RESULTS: We identified expression signatures for expert annotated regions (non-malignant, DCIS, and IDC) and build machine learning models. Classification results for 798 expression signature transcripts showed high coincidence with the expert pathologist annotation for DCIS (100%) and IDC (96%). Extending our analysis to include all 25,179 expressed transcripts resulted in an accuracy of 99% for DCIS and 98% for IDC. Further, classification based on an automatically identified expression signature covering all ST spots of tissue sections resulted in prediction accuracy of 95% for DCIS and 91% for IDC. CONCLUSIONS: This concept study suggest that the ST signatures learned from expert selected breast cancer tissue sections can be used to identify breast cancer regions in whole tissue sections including regions not trained on. Furthermore, the identified expression signatures can classify cancer regions in tissue sections not used for training with high accuracy. Expert-generated but even automatically generated cancer signatures from ST data might be able to classify breast cancer regions and provide clinical decision support for pathologists in the future.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Intraductal não Infiltrante/diagnóstico , Aprendizado de Máquina , Tipagem Molecular/métodos , Transcriptoma , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Feminino , Humanos , Curva ROC , Análise Espacial
5.
Sci Rep ; 8(1): 13164, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177712

RESUMO

Smooth muscle cells (SMC) in blood vessels are normally growth quiescent and transcriptionally inactive. Our objective was to understand promoter usage and dynamics in SMC acutely exposed to a prototypic growth factor or pro-inflammatory cytokine. Using cap analysis gene expression (FANTOM5 project) we report differences in promoter dynamics for immediate-early genes (IEG) and other genes when SMC are exposed to fibroblast growth factor-2 or interleukin-1ß. Of the 1871 promoters responding to FGF2 or IL-1ß considerably more responded to FGF2 (68.4%) than IL-1ß (18.5%) and 13.2% responded to both. Expression clustering reveals sets of genes induced, repressed or unchanged. Among IEG responding rapidly to FGF2 or IL-1ß were FOS, FOSB and EGR-1, which mediates human SMC migration. Motif activity response analysis (MARA) indicates most transcription factor binding motifs in response to FGF2 were associated with a sharp induction at 1 h, whereas in response to IL-1ß, most motifs were associated with a biphasic change peaking generally later. MARA revealed motifs for FOS_FOS{B,L1}_JUN{B,D} and EGR-1..3 in the cluster peaking 1 h after FGF2 exposure whereas these motifs were in clusters peaking 1 h or later in response to IL-1ß. Our findings interrogating CAGE data demonstrate important differences in promoter usage and dynamics in SMC exposed to FGF2 or IL-1ß.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Precoces , Interleucina-1beta/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Regiões Promotoras Genéticas , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Perfilação da Expressão Gênica , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Motivos de Nucleotídeos , Cultura Primária de Células , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais
6.
Open Biol ; 8(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089658

RESUMO

The promoters of immediate early genes (IEGs) are rapidly activated in response to an external stimulus. These genes, also known as primary response genes, have been identified in a range of cell types, under diverse extracellular signals and using varying experimental protocols. Whereas genomic dissection on a case-by-case basis has not resulted in a comprehensive catalogue of IEGs, a rigorous meta-analysis of eight genome-wide FANTOM5 CAGE (cap analysis of gene expression) time course datasets reveals successive waves of promoter activation in IEGs, recapitulating known relationships between cell types and stimuli: we obtain a set of 57 (42 protein-coding) candidate IEGs possessing promoters that consistently drive a rapid but transient increase in expression over time. These genes show significant enrichment for known IEGs reported previously, pathways associated with the immediate early response, and include a number of non-coding RNAs with roles in proliferation and differentiation. Surprisingly, we also find strong conservation of the ordering of activation for these genes, such that 77 pairwise promoter activation orderings are conserved. Using the leverage of comprehensive CAGE time series data across cell types, we also document the extensive alternative promoter usage by such genes, which is likely to have been a barrier to their discovery until now. The common activation ordering of the core set of early-responding genes we identify may indicate conserved underlying regulatory mechanisms. By contrast, the considerably larger number of transiently activated genes that are specific to each cell type and stimulus illustrates the breadth of the primary response.


Assuntos
Expressão Gênica , Genes Precoces , Regiões Promotoras Genéticas , Ativação Transcricional , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Genoma Humano , Humanos , Proteínas Imediatamente Precoces/genética , Células MCF-7 , RNA não Traduzido/genética
7.
BMC Genomics ; 19(1): 181, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510665

RESUMO

BACKGROUND: Evolutionarily conserved RFX transcription factors (TFs) regulate their target genes through a DNA sequence motif called the X-box. Thereby they regulate cellular specialization and terminal differentiation. Here, we provide a comprehensive analysis of all the eight human RFX genes (RFX1-8), their spatial and temporal expression profiles, potential upstream regulators and target genes. RESULTS: We extracted all known human RFX1-8 gene expression profiles from the FANTOM5 database derived from transcription start site (TSS) activity as captured by Cap Analysis of Gene Expression (CAGE) technology. RFX genes are broadly (RFX1-3, RFX5, RFX7) and specifically (RFX4, RFX6) expressed in different cell types, with high expression in four organ systems: immune system, gastrointestinal tract, reproductive system and nervous system. Tissue type specific expression profiles link defined RFX family members with the target gene batteries they regulate. We experimentally confirmed novel TSS locations and characterized the previously undescribed RFX8 to be lowly expressed. RFX tissue and cell type specificity arises mainly from differences in TSS architecture. RFX transcript isoforms lacking a DNA binding domain (DBD) open up new possibilities for combinatorial target gene regulation. Our results favor a new grouping of the RFX family based on protein domain composition. We uncovered and experimentally confirmed the TFs SP2 and ESR1 as upstream regulators of specific RFX genes. Using TF binding profiles from the JASPAR database, we determined relevant patterns of X-box motif positioning with respect to gene TSS locations of human RFX target genes. CONCLUSIONS: The wealth of data we provide will serve as the basis for precisely determining the roles RFX TFs play in human development and disease.


Assuntos
Regulação da Expressão Gênica , Genoma Humano , Regiões Promotoras Genéticas , Fatores de Transcrição de Fator Regulador X/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Sítio de Iniciação de Transcrição
8.
Am J Hypertens ; 31(4): 450-457, 2018 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-29177471

RESUMO

BACKGROUND: Arterial stiffness, measured by pulse wave velocity (PWV), is linked to obesity, cardiovascular disease, and all-cause mortality. Short-term weight loss improves PWV, but the long-term effects are unknown. We investigated the effect of pronounced long-term weight loss on PWV and whether anthropometric/metabolic parameters and/or white adipose tissue (WAT) phenotype could predict this change in PWV. METHODS: Eighty-two obese subjects were examined before and 2 years after Roux-en-Y gastric bypass. Analyses included anthropometrics, routine clinical chemistry, and hyperinsulinemic-euglycemic clamp. Arterial stiffness was measured as aortic PWV (aPWV) using the Arteriograph device. WAT mass and distribution were assessed by dual-X-ray absorptiometry. Baseline visceral and subcutaneous WAT samples were obtained to measure adipocyte cell size. Transcriptomic profiling of subcutaneous WAT was performed in a subset of subjects (n = 30). RESULTS: At the 2-year follow-up, there were significant decreases in body mass index (39.4 ± 3.5 kg/m2 vs. 26.6 ± 3.4 kg/m2; P < 0.0001) and aPWV (7.8 ± 1.5 m/s vs. 7.2 ± 1.4 m/s; P = 0.006). Multiple regression analyses showed that baseline subcutaneous adipocyte volume was associated with a reduction in aPWV (P = 0.014), after adjusting for confounders. Expression analyses of 52 genes implicated in arterial stiffness showed that only one, COL4A1, independently predicted improvements in aPWV after adjusting for confounders (P = 0.006). CONCLUSIONS: Bariatric surgery leads to long-term reduction in aPWV. This improvement can be independently predicted by subcutaneous adipocyte volume and WAT COL4A1 expression, which suggests that subcutaneous WAT has a role in regulating aPWV. CLINICAL TRIALS REGISTRATION: Trial Number NCT01727245 (clinicaltrials.gov).


Assuntos
Adipócitos Brancos/metabolismo , Colágeno Tipo IV/genética , Derivação Gástrica , Obesidade/cirurgia , Análise de Onda de Pulso , Gordura Subcutânea/metabolismo , Rigidez Vascular , Redução de Peso , Adipócitos Brancos/patologia , Adulto , Índice de Massa Corporal , Tamanho Celular , Colágeno Tipo IV/metabolismo , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Valor Preditivo dos Testes , Recuperação de Função Fisiológica , Gordura Subcutânea/patologia , Fatores de Tempo , Transcriptoma , Resultado do Tratamento
9.
J Cell Sci ; 129(13): 2573-85, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199372

RESUMO

Lymphangiogenesis plays a crucial role during development, in cancer metastasis and in inflammation. Activation of VEGFR-3 (also known as FLT4) by VEGF-C is one of the main drivers of lymphangiogenesis, but the transcriptional events downstream of VEGFR-3 activation are largely unknown. Recently, we identified a wave of immediate early transcription factors that are upregulated in human lymphatic endothelial cells (LECs) within the first 30 to 80 min after VEGFR-3 activation. Expression of these transcription factors must be regulated by additional pre-existing transcription factors that are rapidly activated by VEGFR-3 signaling. Using transcription factor activity analysis, we identified the homeobox transcription factor HOXD10 to be specifically activated at early time points after VEGFR-3 stimulation, and to regulate expression of immediate early transcription factors, including NR4A1. Gain- and loss-of-function studies revealed that HOXD10 is involved in LECs migration and formation of cord-like structures. Furthermore, HOXD10 regulates expression of VE-cadherin, claudin-5 and NOS3 (also known as e-NOS), and promotes lymphatic endothelial permeability. Taken together, these results reveal an important and unanticipated role of HOXD10 in the regulation of VEGFR-3 signaling in lymphatic endothelial cells, and in the control of lymphangiogenesis and permeability.


Assuntos
Proteínas de Homeodomínio/genética , Neoplasias/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fatores de Transcrição/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Linhagem Celular , Permeabilidade da Membrana Celular/genética , Movimento Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Linfangiogênese/genética , Metástase Neoplásica , Neoplasias/patologia , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/biossíntese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/biossíntese
10.
PLoS One ; 10(12): e0144176, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658111

RESUMO

Understanding how cells use complex transcriptional programs to alter their fate in response to specific stimuli is an important question in biology. For the MCF-7 human breast cancer cell line, we applied gene expression trajectory models to identify the genes involved in driving cell fate transitions. We modified trajectory models to account for the scenario where cells were exposed to different stimuli, in this case epidermal growth factor and heregulin, to arrive at different cell fates, i.e. proliferation and differentiation respectively. Using genome-wide CAGE time series data collected from the FANTOM5 consortium, we identified the sets of promoters that were involved in the transition of MCF-7 cells to their specific fates versus those with expression changes that were generic to both stimuli. Of the 1,552 promoters identified, 1,091 had stimulus-specific expression while 461 promoters had generic expression profiles over the time course surveyed. Many of these stimulus-specific promoters mapped to key regulators of the ERK (extracellular signal-regulated kinases) signaling pathway such as FHL2 (four and a half LIM domains 2). We observed that in general, generic promoters peaked in their expression early on in the time course, while stimulus-specific promoters tended to show activation of their expression at a later stage. The genes that mapped to stimulus-specific promoters were enriched for pathways that control focal adhesion, p53 signaling and MAPK signaling while generic promoters were enriched for cell death, transcription and the cell cycle. We identified 162 genes that were controlled by an alternative promoter during the time course where a subset of 37 genes had separate promoters that were classified as stimulus-specific and generic. The results of our study highlighted the degree of complexity involved in regulating a cell fate transition where multiple promoters mapping to the same gene can demonstrate quite divergent expression profiles.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Neuregulina-1/farmacologia , Regiões Promotoras Genéticas/genética , Apoptose/genética , Neoplasias da Mama/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Adesões Focais/genética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Células MCF-7 , Proteína Supressora de Tumor p53/genética
11.
Cell Rep ; 13(7): 1493-1504, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26549461

RESUMO

VEGF-C/VEGFR-3 signaling plays a central role in lymphatic development, regulating the budding of lymphatic progenitor cells from embryonic veins and maintaining the expression of PROX1 during later developmental stages. However, how VEGFR-3 activation translates into target gene expression is still not completely understood. We used cap analysis of gene expression (CAGE) RNA sequencing to characterize the transcriptional changes invoked by VEGF-C in LECs and to identify the transcription factors (TFs) involved. We found that MAFB, a TF involved in differentiation of various cell types, is rapidly induced and activated by VEGF-C. MAFB induced expression of PROX1 as well as other TFs and markers of differentiated LECs, indicating a role in the maintenance of the mature LEC phenotype. Correspondingly, E14.5 Mafb(-/-) embryos showed impaired lymphatic patterning in the skin. This suggests that MAFB is an important TF involved in lymphangiogenesis.


Assuntos
Linfangiogênese , Fator de Transcrição MafB/fisiologia , Transcriptoma , Animais , Antígenos de Diferenciação/metabolismo , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Desenvolvimento Embrionário , Endotélio Linfático/metabolismo , Perfilação da Expressão Gênica , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Sci Rep ; 5: 11999, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26179713

RESUMO

The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Receptor ErbB-2/genética , Transcrição Gênica , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7
13.
J Allergy Clin Immunol ; 136(3): 638-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25863981

RESUMO

BACKGROUND: Children with problematic severe asthma have poor disease control despite high doses of inhaled corticosteroids and additional therapy, leading to personal suffering, early deterioration of lung function, and significant consumption of health care resources. If no exacerbating factors, such as smoking or allergies, are found after extensive investigation, these children are given a diagnosis of therapy-resistant (or therapy-refractory) asthma (SA). OBJECTIVE: We sought to deepen our understanding of childhood SA by analyzing gene expression and modeling the underlying regulatory transcription factor networks in peripheral blood leukocytes. METHODS: Gene expression was analyzed by using Cap Analysis of Gene Expression in children with SA (n = 13), children with controlled persistent asthma (n = 15), and age-matched healthy control subjects (n = 9). Cap Analysis of Gene Expression sequencing detects the transcription start sites of known and novel mRNAs and noncoding RNAs. RESULTS: Sample groups could be separated by hierarchical clustering on 1305 differentially expressed transcription start sites, including 816 known genes and several novel transcripts. Ten of 13 tested novel transcripts were validated by means of RT-PCR and Sanger sequencing. Expression of RAR-related orphan receptor A (RORA), which has been linked to asthma in genome-wide association studies, was significantly upregulated in patients with SA. Gene network modeling revealed decreased glucocorticoid receptor signaling and increased activity of the mitogen-activated protein kinase and Jun kinase cascades in patients with SA. CONCLUSION: Circulating leukocytes from children with controlled asthma and those with SA have distinct gene expression profiles, demonstrating the possible development of specific molecular biomarkers and supporting the need for novel therapeutic approaches.


Assuntos
Asma/tratamento farmacológico , Asma/genética , Resistência a Medicamentos/genética , Glucocorticoides/uso terapêutico , RNA Mensageiro/genética , Transcriptoma , Adolescente , Asma/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Glucocorticoides/genética , Índice de Gravidade de Doença
14.
PLoS Comput Biol ; 11(4): e1004217, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25885578

RESUMO

The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.


Assuntos
Proteínas Imediatamente Precoces/genética , RNA não Traduzido/genética , Transcrição Gênica/genética , Biologia Computacional , Humanos , Proteínas Imediatamente Precoces/metabolismo , Cinética , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Estatísticos , RNA não Traduzido/metabolismo
15.
Sci Rep ; 5: 8283, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25655563

RESUMO

We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Leucemia Mielomonocítica Aguda/genética , Leucemia Mielomonocítica Aguda/patologia , Modelos Biológicos , Ésteres de Forbol/farmacologia , Transcrição Gênica , Linhagem Celular Tumoral , Análise por Conglomerados , Biologia Computacional/métodos , Humanos
16.
Int J Mol Sci ; 16(1): 1192-208, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25569094

RESUMO

MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and mature microRNAs, respectively. Although the fundamental functions of microRNAs in RNA silencing have been gradually uncovered, less is known about the regulatory mechanisms of microRNA expression. Here, we report that telomerase reverse transcriptase (TERT) extensively affects the expression levels of mature microRNAs. Deep sequencing-based screens of short RNA populations revealed that the suppression of TERT resulted in the downregulation of microRNAs expressed in THP-1 cells and HeLa cells. Primary and precursor microRNA levels were also reduced under the suppression of TERT. Similar results were obtained with the suppression of either BRG1 (also called SMARCA4) or nucleostemin, which are proteins interacting with TERT and functioning beyond telomeres. These results suggest that TERT regulates microRNAs at the very early phases in their biogenesis, presumably through non-telomerase mechanism(s).


Assuntos
MicroRNAs/metabolismo , Telomerase/metabolismo , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação para Baixo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Cell Metab ; 19(6): 981-92, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24856929

RESUMO

White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance.


Assuntos
Adipócitos/fisiologia , Adipogenia/fisiologia , Tecido Adiposo Branco/citologia , Lipólise/fisiologia , Transativadores/metabolismo , Adipogenia/genética , Adiposidade , Animais , Células Cultivadas , Diabetes Mellitus/patologia , Dieta Hiperlipídica , Feminino , Expressão Gênica , Humanos , Hipertrofia , Inflamação/patologia , Resistência à Insulina/fisiologia , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno , Transativadores/biossíntese , Transativadores/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Blood ; 123(17): e46-57, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24671951

RESUMO

Hematopoietic differentiation is governed by a complex regulatory program controlling the generation of different lineages of blood cells from multipotent hematopoietic stem cells. The transcriptional program that dictates hematopoietic cell fate and differentiation requires an epigenetic memory function provided by a network of epigenetic factors regulating DNA methylation, posttranslational histone modifications, and chromatin structure. Aberrant interactions between epigenetic factors and transcription factors cause perturbations in the blood cell differentiation program that result in various types of hematopoietic disorders. To elucidate the contributions of different epigenetic factors in human hematopoiesis, high-throughput cap analysis of gene expression was used to build transcription profiles of 199 epigenetic factors in a wide range of blood cells. Our epigenetic transcriptome analysis revealed cell type- (eg, HELLS and ACTL6A), lineage- (eg, MLL), and/or leukemia- (eg, CHD2, CBX8, and EPC1) specific expression of several epigenetic factors. In addition, we show that several epigenetic factors use alternative transcription start sites in different cell types. This analysis could serve as a resource for the scientific community for further characterization of the role of these epigenetic factors in blood development.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Hematopoese/genética , Hematopoese/fisiologia , Diferenciação Celular , Linhagem da Célula , Metilação de DNA , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Análise de Componente Principal , Transcrição Gênica
19.
BMC Genomics ; 15: 120, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24669905

RESUMO

BACKGROUND: Deciphering the most common modes by which chromatin regulates transcription, and how this is related to cellular status and processes is an important task for improving our understanding of human cellular biology. The FANTOM5 and ENCODE projects represent two independent large scale efforts to map regulatory and transcriptional features to the human genome. Here we investigate chromatin features around a comprehensive set of transcription start sites in four cell lines by integrating data from these two projects. RESULTS: Transcription start sites can be distinguished by chromatin states defined by specific combinations of both chromatin mark enrichment and the profile shapes of these chromatin marks. The observed patterns can be associated with cellular functions and processes, and they also show association with expression level, location relative to nearby genes, and CpG content. In particular we find a substantial number of repressed inter- and intra-genic transcription start sites enriched for active chromatin marks and Pol II, and these sites are strongly associated with immediate-early response processes and cell signaling. Associations between start sites with similar chromatin patterns are validated by significant correlations in their global expression profiles. CONCLUSIONS: The results confirm the link between chromatin state and cellular function for expressed transcripts, and also indicate that active chromatin states at repressed transcripts may poise transcripts for rapid activation during immune response.


Assuntos
Cromatina/metabolismo , Sítio de Iniciação de Transcrição , Algoritmos , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Biologia Computacional , Ilhas de CpG , Regulação da Expressão Gênica , Biblioteca Gênica , Células HeLa , Células Hep G2 , Histonas/química , Histonas/metabolismo , Humanos , Células K562 , Análise de Componente Principal , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
20.
Diabetes ; 63(4): 1248-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24379347

RESUMO

Adipose tissue inflammation is present in insulin-resistant conditions. We recently proposed a network of microRNAs (miRNAs) and transcription factors (TFs) regulating the production of the proinflammatory chemokine (C-C motif) ligand-2 (CCL2) in adipose tissue. We presently extended and further validated this network and investigated if the circuits controlling CCL2 can interact in human adipocytes and macrophages. The updated subnetwork predicted that miR-126/-193b/-92a control CCL2 production by several TFs, including v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1), MYC-associated factor X (MAX), and specificity protein 12 (SP1). This was confirmed in human adipocytes by the observation that gene silencing of ETS1, MAX, or SP1 attenuated CCL2 production. Combined gene silencing of ETS1 and MAX resulted in an additive reduction in CCL2 production. Moreover, overexpression of miR-126/-193b/-92a in different pairwise combinations reduced CCL2 secretion more efficiently than either miRNA alone. However, although effects on CCL2 secretion by co-overexpression of miR-92a/-193b and miR-92a/-126 were additive in adipocytes, the combination of miR-126/-193b was primarily additive in macrophages. Signals for miR-92a and -193b converged on the nuclear factor-κB pathway. In conclusion, TF and miRNA-mediated regulation of CCL2 production is additive and partly relayed by cell-specific networks in human adipose tissue that may be important for the development of insulin resistance/type 2 diabetes.


Assuntos
Tecido Adiposo Branco/metabolismo , Quimiocina CCL2/biossíntese , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Feminino , Inativação Gênica , Humanos , Macrófagos/metabolismo , Masculino , MicroRNAs/fisiologia , Proteína Proto-Oncogênica c-ets-1/fisiologia , Fator de Transcrição Sp1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA