Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194265

RESUMO

Depletion of torsinA from hepatocytes leads to reduced liver triglyceride secretion and marked hepatic steatosis. TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activator, lamina-associated polypeptide 1 (LAP1) or luminal domain-like LAP1 (LULL1). We previously demonstrated that depletion of LAP1 from hepatocytes has more modest effects on liver triglyceride secretion and steatosis development than depletion of torsinA. We now show that depletion of LULL1 alone does not significantly decrease triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Depletion of both LAP1 and torsinA from hepatocytes generated phenotypes similar to those observed with only torsinA depletion, implying that the 2 proteins act in the same pathway in liver lipid metabolism. Our results demonstrate that torsinA and its activators dynamically regulate hepatic lipid metabolism.


Assuntos
Proteínas de Transporte , Metabolismo dos Lipídeos , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo
2.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37547008

RESUMO

TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activators lamina-associated polypeptide 1 (LAP1) in the perinuclear space or luminal domain-like LAP1 (LULL1) throughout the endoplasmic reticulum. However, the interaction of torsinA with LAP1 and LULL1 has not yet been shown to modulate a defined physiological process in mammals in vivo . We previously demonstrated that depletion of torsinA from mouse hepatocytes leads to reduced liver triglyceride secretion and marked steatosis, whereas depletion of LAP1 had more modest similar effects. We now show that depletion of LULL1 alone does not significantly decrease liver triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 from hepatocytes leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Our results demonstrate that torsinA and its activators dynamically regulate a physiological process in mammals in vivo .

3.
J Lipid Res ; 63(10): 100277, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100089

RESUMO

Lipid droplets (LDs) are generally considered to be synthesized in the ER and utilized in the cytoplasm. However, LDs have been observed inside nuclei in some cells, although recent research on nuclear LDs has focused on cultured cell lines. To better understand nuclear LDs that occur in vivo, here we examined LDs in primary hepatocytes from mice following depletion of the nuclear envelope protein lamina-associated polypeptide 1 (LAP1). Microscopic image analysis showed that LAP1-depleted hepatocytes contain frequent nuclear LDs, which differ from cytoplasmic LDs in their associated proteins. We found type 1 nucleoplasmic reticula, which are invaginations of the inner nuclear membrane, are often associated with nuclear LDs in these hepatocytes. Furthermore, in vivo depletion of the nuclear envelope proteins lamin A and C from mouse hepatocytes led to severely abnormal nuclear morphology, but significantly fewer nuclear LDs than were observed upon depletion of LAP1. In addition, we show both high-fat diet feeding and fasting of mice increased cytoplasmic lipids in LAP1-depleted hepatocytes but reduced nuclear LDs, demonstrating a relationship of LD formation with nutritional state. Finally, depletion of microsomal triglyceride transfer protein did not change the frequency of nuclear LDs in LAP1-depleted hepatocytes, suggesting that it is not required for the biogenesis of nuclear LDs in these cells. Together, these data show that LAP1-depleted hepatocytes represent an ideal mammalian system to investigate the biogenesis of nuclear LDs and their partitioning between the nucleus and cytoplasm in response to changes in nutritional state and cellular metabolism in vivo.


Assuntos
Gotículas Lipídicas , Membrana Nuclear , Camundongos , Animais , Gotículas Lipídicas/metabolismo , Membrana Nuclear/metabolismo , Lamina Tipo A/metabolismo , Hepatócitos/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Lipídeos , Mamíferos/metabolismo
4.
J Clin Invest ; 129(11): 4885-4900, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31408437

RESUMO

Deciphering novel pathways regulating liver lipid content has profound implications for understanding the pathophysiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Recent evidence suggests that the nuclear envelope is a site of regulation of lipid metabolism but there is limited appreciation of the responsible mechanisms and molecular components within this organelle. We showed that conditional hepatocyte deletion of the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1) caused defective VLDL secretion and steatosis, including intranuclear lipid accumulation. LAP1 binds to and activates torsinA, an AAA+ ATPase that resides in the perinuclear space and continuous main ER. Deletion of torsinA from mouse hepatocytes caused even greater reductions in VLDL secretion and profound steatosis. Both of these mutant mouse lines developed hepatic steatosis and subsequent steatohepatitis on a regular chow diet in the absence of whole-body insulin resistance or obesity. Our results establish an essential role for the nuclear envelope-localized torsinA-LAP1 complex in hepatic VLDL secretion and suggest that the torsinA pathway participates in the pathophysiology of nonalcoholic fatty liver disease.


Assuntos
Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Membrana Nuclear/metabolismo , Animais , Proteínas de Transporte/genética , Hepatócitos/patologia , Metabolismo dos Lipídeos , Lipoproteínas VLDL/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Membrana Nuclear/genética , Membrana Nuclear/patologia
5.
J Cell Biol ; 216(3): 657-674, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28242745

RESUMO

The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope-localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini-nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Linhagem Celular , Núcleo Celular/fisiologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Mioblastos/metabolismo , Mioblastos/fisiologia , Células NIH 3T3 , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiologia , Proteínas Nucleares/metabolismo
6.
Hum Mol Genet ; 26(1): 65-78, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798115

RESUMO

Lamina-associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that has been implicated in striated muscle maintenance. Mutations in its gene have been linked to muscular dystrophy and cardiomyopathy. As germline deletion of the gene encoding LAP1 is perinatal lethal, we explored its potential role in myogenic differentiation and development by generating a conditional knockout mouse in which the protein is depleted from muscle progenitors at embryonic day 8.5 (Myf5-Lap1CKO mice). Although cultured myoblasts lacking LAP1 demonstrated defective terminal differentiation and altered expression of muscle regulatory factors, embryonic myogenesis and formation of skeletal muscle occurred in both mice with a Lap1 germline deletion and Myf5-Lap1CKO mice. However, skeletal muscle fibres were hypotrophic and their nuclei were morphologically abnormal with a wider perinuclear space than normal myonuclei. Myf5-Lap1CKO mouse skeletal muscle contained fewer satellite cells than normal and these cells had evidence of reduced myogenic potential. Abnormalities in signalling pathways required for postnatal hypertrophic growth were also observed in skeletal muscles of these mice. Our results demonstrate that early embryonic depletion of LAP1 does not impair myogenesis but that it is necessary for postnatal skeletal muscle growth.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Distrofias Musculares/embriologia , Mioblastos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fatores de Regulação Miogênica
7.
J Cell Sci ; 128(15): 2854-65, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092934

RESUMO

TorsinA (also known as torsin-1A) is a membrane-embedded AAA+ ATPase that has an important role in the nuclear envelope lumen. However, most torsinA is localized in the peripheral endoplasmic reticulum (ER) lumen where it has a slow mobility that is incompatible with free equilibration between ER subdomains. We now find that nuclear-envelope-localized torsinA is present on the inner nuclear membrane (INM) and ask how torsinA reaches this subdomain. The ER system contains two transmembrane proteins, LAP1 and LULL1 (also known as TOR1AIP1 and TOR1AIP2, respectively), that reversibly co-assemble with and activate torsinA. Whereas LAP1 localizes on the INM, we show that LULL1 is in the peripheral ER and does not enter the INM. Paradoxically, interaction between torsinA and LULL1 in the ER targets torsinA to the INM. Native gel electrophoresis reveals torsinA oligomeric complexes that are destabilized by LULL1. Mutations in torsinA or LULL1 that inhibit ATPase activity reduce the access of torsinA to the INM. Furthermore, although LULL1 binds torsinA in the ER lumen, its effect on torsinA localization requires cytosolic-domain-mediated oligomerization. These data suggest that LULL1 oligomerizes to engage and transiently disassemble torsinA oligomers, and is thereby positioned to transduce cytoplasmic signals to the INM through torsinA.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Células 3T3 , Adenosina Trifosfatases/metabolismo , Animais , Células CHO , Proteínas de Transporte/genética , Linhagem Celular , Cricetulus , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Proteínas Nucleares/metabolismo , Ligação Proteica
8.
J Neurosci ; 35(14): 5724-42, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855184

RESUMO

Accumulating evidence from genetic and biochemical studies implicates dysfunction of the autophagic-lysosomal pathway as a key feature in the pathogenesis of Parkinson's disease (PD). Most studies have focused on accumulation of neurotoxic α-synuclein secondary to defects in autophagy as the cause of neurodegeneration, but abnormalities of the autophagic-lysosomal system likely mediate toxicity through multiple mechanisms. To further explore how endolysosomal dysfunction causes PD-related neurodegeneration, we generated a murine model of Kufor-Rakeb syndrome (KRS), characterized by early-onset Parkinsonism with additional neurological features. KRS is caused by recessive loss-of-function mutations in the ATP13A2 gene encoding the endolysosomal ATPase ATP13A2. We show that loss of ATP13A2 causes a specific protein trafficking defect, and that Atp13a2 null mice develop age-related motor dysfunction that is preceded by neuropathological changes, including gliosis, accumulation of ubiquitinated protein aggregates, lipofuscinosis, and endolysosomal abnormalities. Contrary to predictions from in vitro data, in vivo mouse genetic studies demonstrate that these phenotypes are α-synuclein independent. Our findings indicate that endolysosomal dysfunction and abnormalities of α-synuclein homeostasis are not synonymous, even in the context of an endolysosomal genetic defect linked to Parkinsonism, and highlight the presence of α-synuclein-independent neurotoxicity consequent to endolysosomal dysfunction.


Assuntos
Adenosina Trifosfatases/deficiência , Encéfalo/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/deficiência , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Citosol/metabolismo , Citosol/ultraestrutura , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Endossomos/metabolismo , Endossomos/ultraestrutura , Comportamento Exploratório/fisiologia , Elevação dos Membros Posteriores/psicologia , Concentração de Íons de Hidrogênio , Lipídeos/análise , Lisossomos/ultraestrutura , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Equilíbrio Postural/genética , ATPases Translocadoras de Prótons
9.
Mol Biol Cell ; 26(9): 1752-63, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25739455

RESUMO

Torsin proteins are AAA+ ATPases that localize to the endoplasmic reticular/nuclear envelope (ER/NE) lumen. A mutation that markedly impairs torsinA function causes the CNS disorder DYT1 dystonia. Abnormalities of NE membranes have been linked to torsinA loss of function and the pathogenesis of DYT1 dystonia, leading us to investigate the role of the Caenorhabditis elegans torsinA homologue OOC-5 at the NE. We report a novel role for torsin in nuclear pore biology. In ooc-5-mutant germ cell nuclei, nucleoporins (Nups) were mislocalized in large plaques beginning at meiotic entry and persisted throughout meiosis. Moreover, the KASH protein ZYG-12 was mislocalized in ooc-5 gonads. Nups were mislocalized in adult intestinal nuclei and in embryos from mutant mothers. EM analysis revealed vesicle-like structures in the perinuclear space of intestinal and germ cell nuclei, similar to defects reported in torsin-mutant flies and mice. Consistent with a functional disruption of Nups, ooc-5-mutant embryos displayed impaired nuclear import kinetics, although the nuclear pore-size exclusion barrier was maintained. Our data are the first to demonstrate a requirement for a torsin for normal Nup localization and function and suggest that these functions are likely conserved.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células Germinativas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Membrana Nuclear/metabolismo
10.
Nucleus ; 5(3): 260-459, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24859316

RESUMO

We previously showed that striated muscle-selective depletion of lamina-associated polypeptide 1 (LAP1), an integral inner nuclear membrane protein, leads to profound muscular dystrophy with premature death in mice. As LAP1 is also depleted in hearts of these mice, we examined their cardiac phenotype. Striated muscle-selective LAP1 knockout mice display ventricular systolic dysfunction with abnormal induction of genes encoding cardiomyopathy related proteins. To eliminate possible confounding effects due to skeletal muscle pathology, we generated a new mouse line in which LAP1 is deleted in a cardiomyocyte-selective manner. These mice had no skeletal muscle pathology and appeared overtly normal at 20 weeks of age. However, cardiac echocardiography revealed that they developed left ventricular systolic dysfunction and cardiac gene expression analysis revealed abnormal induction of cardiomyopathy-related genes. Our results demonstrate that LAP1 expression in cardiomyocytes is required for normal left ventricular function, consistent with a report of cardiomyopathy in a human subject with mutation in the gene encoding LAP1.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Proteínas Nucleares/genética , Disfunção Ventricular Esquerda/genética
11.
Semin Cell Dev Biol ; 29: 164-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24508913

RESUMO

Mutations in genes encoding widely expressed nuclear envelope proteins often lead to diseases that manifest in specific tissues. Lamina-associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that is expressed in most cells and tissues. Within the nuclear envelope, LAP1 interacts physically with lamins, torsinA and emerin, suggesting it may serve as a key node for transducing signals across the inner nuclear membrane. Indeed, recent in vivo studies in genetically modified mice strongly support functional links between LAP1 and both torsinA (in neurons) and emerin (in muscle). These studies suggest that tissue-selective diseases caused by mutations in genes encoding nuclear envelope proteins may result, at least in part, from the selective disruption of discrete nuclear envelope protein complexes.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Distrofias Musculares/genética , Membrana Nuclear/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Humanos , Laminas/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Distrofias Musculares/patologia , Mutação , Transdução de Sinais
12.
PLoS One ; 8(10): e76788, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116158

RESUMO

Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatase 1/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Chlorocebus aethiops , Proteínas do Citoesqueleto , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Proteína Fosfatase 1/genética , Ratos , Ratos Wistar , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
13.
Dev Cell ; 26(6): 591-603, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24055652

RESUMO

X-linked Emery-Dreifuss muscular dystrophy is caused by loss of function of emerin, an integral protein of the inner nuclear membrane. Yet emerin null mice are essentially normal, suggesting the existence of a critical compensating factor. We show that the lamina-associated polypeptide1 (LAP1) interacts with emerin. Conditional deletion of LAP1 from striated muscle causes muscular dystrophy; this pathology is worsened in the absence of emerin. LAP1 levels are significantly higher in mouse than human skeletal muscle, and reducing LAP1 by approximately half in mice also induces muscle abnormalities in emerin null mice. Conditional deletion of LAP1 from hepatocytes yields mice that exhibit normal liver function and are indistinguishable from littermate controls. These results establish that LAP1 interacts physically and functionally with emerin and plays an essential and selective role in skeletal muscle maintenance. They also highlight how dissecting differences between mouse and human phenotypes can provide fundamental insights into disease mechanisms.


Assuntos
Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto , Fibroblastos/metabolismo , Deleção de Genes , Células HEK293 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/fisiologia , Proteínas de Membrana/genética , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Fator 3 Associado a Receptor de TNF/genética
14.
J Neurochem ; 119(3): 630-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21883213

RESUMO

Proteasome-mediated proteolysis is a major protein degradation mechanism in cells and its dysfunction has been implicated in the pathogenesis of several neurodegenerative diseases, each with the common features of neuronal death and formation of ubiquitinated inclusions found within neurites, the cell body, or nucleus. Previous models of proteasome dysfunction have employed pharmacological inhibition of the catalytic subunits of the 20S proteasome core, or the genetic manipulation of specific subunits resulting in altered proteasome assembly. In this study, we report the use of dominant negative subunits of the 19S regulatory proteasome complex that mediate the recognition of ubiquitinated substrates as well as the removal of the poly-ubiquitin chain. Interestingly, while each mutant subunit-induced inclusion formation, like that seen with pharmacological inhibition of the 20S proteasome, none was able to induce apoptotic death, or trigger activation of macroautophagy, in either dopaminergic cell lines or primary cortical neurons. This finding highlights the dissociation between the mechanisms of neuronal inclusion formation and the induction of cell death, and represents a novel cellular model for Lewy body-like inclusion formation in neurons.


Assuntos
Marcação de Genes/métodos , Corpos de Inclusão/enzimologia , Neurônios/enzimologia , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/genética , Ubiquitinação/genética , Animais , Morte Celular/genética , Células Cultivadas , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Camundongos , Neurônios/patologia , Células PC12 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos
15.
Proc Natl Acad Sci U S A ; 107(21): 9861-6, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20457914

RESUMO

A striking but poorly understood feature of many diseases is the unique involvement of neural tissue. One example is the CNS-specific disorder DYT1 dystonia, caused by a 3-bp deletion ("DeltaE") in the widely expressed gene TOR1A. Disease mutant knockin mice (Tor1a(DeltaE/DeltaE)) exhibit disrupted nuclear membranes selectively in neurons, mimicking the tissue specificity of the human disease and providing a model system in which to dissect the mechanisms underlying neural selectivity. Our in vivo studies demonstrate that lamina-associated polypeptide 1 (LAP1) and torsinB function with torsinA to maintain normal nuclear membrane morphology. Moreover, we show that nonneuronal cells express dramatically higher levels of torsinB and that RNAi-mediated depletion of torsinB (but not other torsin family members) causes nuclear membrane abnormalities in Tor1a(DeltaE/DeltaE) nonneuronal cells. The Tor1a(DeltaE/DeltaE) neural selective phenotype therefore arises because high levels of torsinB protect nonneuronal cells from the consequences of torsinA dysfunction, demonstrating how tissue specificity may result from differential susceptibility of cell types to insults that disrupt ubiquitous biological pathways.


Assuntos
Chaperonas Moleculares/metabolismo , Mutação , Neurônios/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Microscopia Eletrônica , Chaperonas Moleculares/genética , Neurônios/ultraestrutura , Interferência de RNA
16.
J Cell Biol ; 168(6): 855-62, 2005 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-15767459

RESUMO

A glutamic acid deletion (DeltaE) in the AAA+ protein torsinA causes DYT1 dystonia. Although the majority of torsinA resides within the endoplasmic reticulum (ER), torsinA binds a substrate in the lumen of the nuclear envelope (NE), and the DeltaE mutation enhances this interaction. Using a novel cell-based screen, we identify lamina-associated polypeptide 1 (LAP1) as a torsinA-interacting protein. LAP1 may be a torsinA substrate, as expression of the isolated lumenal domain of LAP1 inhibits the NE localization of "substrate trap" EQ-torsinA and EQ-torsinA coimmunoprecipitates with LAP1 to a greater extent than wild-type torsinA. Furthermore, we identify a novel transmembrane protein, lumenal domain like LAP1 (LULL1), which also appears to interact with torsinA. Interestingly, LULL1 resides in the main ER. Consequently, torsinA interacts directly or indirectly with a novel class of transmembrane proteins that are localized in different subdomains of the ER system, either or both of which may play a role in the pathogenesis of DYT1 dystonia.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Sequência Conservada , Cricetinae , Retículo Endoplasmático/química , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Células HeLa , Humanos , Cinética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Membrana Nuclear/metabolismo , Testes de Precipitina , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transfecção
17.
J Biol Chem ; 279(45): 46915-20, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15322100

RESUMO

Proteasomal dysfunction may underlie certain neuro-degenerative conditions such as Parkinson disease. We have shown that pharmacological inhibition of the proteasome in cultured neuronal cells leads to apoptotic death and formation of cytoplasmic ubiquitinated inclusions. These inclusions stain for alpha-synuclein and assume a fibrillar structure, as assessed by thioflavine S staining, and therefore resemble Lewy bodies. alpha-Synuclein is thought to be a central component of Lewy bodies. Whether alpha-synuclein is required for inclusion formation or apoptotic death has not been formally assessed. The present study examines whether alpha-synuclein deficiency in neurons alters their sensitivity to proteasomal inhibition-induced apoptosis or inclusion formation. Cortical neurons derived from alpha-synuclein-null mice showed a similar sensitivity to death induced by the proteasomal inhibitor lactacystin compared with neurons derived from wild-type mice. Furthermore, the absence of alpha-synuclein did not influence the percentage of lactacystin-treated neurons harboring cytoplasmic ubiquitinated inclusions or alter the solubility of such inclusions. In contrast, however, ubiquitinated inclusions in alpha-synuclein-deficient neurons lacked amyloid-like fibrillization, as determined by thioflavine S staining. This indicates that although alpha-synuclein deficiency does not affect the formation of ubiquitinated inclusions, it does significantly alter their structure. The lack of effect on survival in alpha-synuclein knock-out cultures further suggests that the fibrillar nature of the inclusions does not contribute to neuronal degeneration in this model.


Assuntos
Acetilcisteína/análogos & derivados , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Inibidores de Proteassoma , Ubiquitina/metabolismo , Acetilcisteína/farmacologia , Animais , Apoptose , Benzotiazóis , Western Blotting , Células Cultivadas , Citoplasma/metabolismo , Genótipo , Corpos de Lewy/metabolismo , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Proteases/farmacologia , Ratos , Sinucleínas , Tiazóis/metabolismo , Fatores de Tempo , alfa-Sinucleína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA