Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 131(11): 1761-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22773132

RESUMO

Autosomal recessive cutis laxa (ARCL) syndromes are phenotypically overlapping, but genetically heterogeneous disorders. Mutations in the ATP6V0A2 gene were found to underlie both, autosomal recessive cutis laxa type 2 (ARCL2), Debré type, and wrinkly skin syndrome (WSS). The ATP6V0A2 gene encodes the a2 subunit of the V-type H(+)-ATPase, playing a role in proton translocation, and possibly also in membrane fusion. Here, we describe a highly variable phenotype in 13 patients with ARCL2, including the oldest affected individual described so far, who showed strikingly progressive dysmorphic features and heterotopic calcifications. In these individuals we identified 17 ATP6V0A2 mutations, 14 of which are novel. Furthermore, we demonstrate a localization of ATP6V0A2 at the Golgi-apparatus and a loss of the mutated ATP6V0A2 protein in patients' dermal fibroblasts. Investigation of brefeldin A-induced Golgi collapse in dermal fibroblasts as well as in HeLa cells deficient for ATP6V0A2 revealed a delay, which was absent in cells deficient for the ARCL-associated proteins GORAB or PYCR1. Furthermore, fibroblasts from patients with ATP6V0A2 mutations displayed elevated TGF-ß signalling and increased TGF-ß1 levels in the supernatant. Our current findings expand the genetic and phenotypic spectrum and suggest that, besides the known glycosylation defect, alterations in trafficking and signalling processes are potential key events in the pathogenesis of ATP6V0A2-related ARCL.


Assuntos
Cútis Laxa/congênito , Mutação/genética , ATPases Translocadoras de Prótons/genética , Fator de Crescimento Transformador beta1/metabolismo , Adolescente , Adulto , Apoptose , Western Blotting , Brefeldina A/farmacologia , Células Cultivadas , Pré-Escolar , Cútis Laxa/genética , Cútis Laxa/metabolismo , Cútis Laxa/patologia , Ensaio de Imunoadsorção Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Imunofluorescência , Glicosilação/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Lactente , Masculino , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Adulto Jovem
2.
Hum Genet ; 127(5): 555-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20157829

RESUMO

Schizencephaly (SCH) is a clinically and etiologically heterogeneous cerebral malformation presenting as unilateral or bilateral hemispheric cleft with direct connection between the inner and outer liquor spaces. The SCH cleft is usually lined by gray matter, which appears polymicrogyric implying an associated impairment of neuronal migration. The majority of SCH patients are sporadic, but familial SCH has been described. An initial report of heterozygous mutations in the homeobox gene EMX2 could not be confirmed in 52 patients investigated in this study in agreement with two independent SCH patient cohorts published previously. SCH frequently occurs with additional cerebral malformations like hypoplasia or aplasia of the septum pellucidum or optic nerve, suggesting the involvement of genes important for the establishment of midline forebrain structures. We therefore considered holoprosencephaly (HPE)-associated genes as potential SCH candidates and report for the first time heterozygous mutations in SIX3 and SHH in a total of three unrelated patients and one fetus with SCH; one of them without obvious associated malformations of midline forebrain structures. Three of these mutations have previously been reported in independent patients with HPE. SIX3 acts directly upstream of SHH, and the SHH pathway is a key regulator of ventral forebrain patterning. Our data indicate that in a subset of patients SCH may develop as one aspect of a more complex malformation of the ventral forebrain, directly result from mutations in the SHH pathway and hence be considered as yet another feature of the broad phenotypic spectrum of holoprosencephaly.


Assuntos
Proteínas do Olho/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteínas de Homeodomínio/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Proteínas do Tecido Nervoso/genética , Sequência de Bases , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Proteína Homeobox SIX3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA