Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 3(11): 844-853, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27844030

RESUMO

OBJECTIVE: To determine the frequency of distinctive EGFr cysteine altering NOTCH3 mutations in the 60,706 exomes of the exome aggregation consortium (ExAC) database. METHODS: ExAC was queried for mutations distinctive for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), namely mutations leading to a cysteine amino acid change in one of the 34 EGFr domains of NOTCH3. The genotype-phenotype correlation predicted by the ExAC data was tested in an independent cohort of Dutch CADASIL patients using quantified MRI lesions. The Dutch CADASIL registry was probed for paucisymptomatic individuals older than 70 years. RESULTS: We identified 206 EGFr cysteine altering NOTCH3 mutations in ExAC, with a total prevalence of 3.4/1000. More than half of the distinct mutations have been previously reported in CADASIL patients. Despite the clear overlap, the mutation distribution in ExAC differs from that in reported CADASIL patients, as mutations in ExAC are predominantly located outside of EGFr domains 1-6. In an independent Dutch CADASIL cohort, we found that patients with a mutation in EGFr domains 7-34 have a significantly lower MRI lesion load than patients with a mutation in EGFr domains 1-6. INTERPRETATION: The frequency of EGFr cysteine altering NOTCH3 mutations is 100-fold higher than expected based on estimates of CADASIL prevalence. This challenges the current CADASIL disease paradigm, and suggests that certain mutations may more frequently cause a much milder phenotype, which may even go clinically unrecognized. Our data suggest that individuals with a mutation located in EGFr domains 1-6 are predisposed to the more severe "classical" CADASIL phenotype, whereas individuals with a mutation outside of EGFr domains 1-6 can remain paucisymptomatic well into their eighth decade.

2.
Brain ; 139(Pt 4): 1123-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26912635

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, is a hereditary cerebral small vessel disease caused by characteristic cysteine altering missense mutations in the NOTCH3 gene. NOTCH3 mutations in CADASIL result in an uneven number of cysteine residues in one of the 34 epidermal growth factor like-repeat (EGFr) domains of the NOTCH3 protein. The consequence of an unpaired cysteine residue in an EGFr domain is an increased multimerization tendency of mutant NOTCH3, leading to toxic accumulation of the protein in the (cerebro)vasculature, and ultimately reduced cerebral blood flow, recurrent stroke and vascular dementia. There is no therapy to delay or alleviate symptoms in CADASIL. We hypothesized that exclusion of the mutant EGFr domain from NOTCH3 would abolish the detrimental effect of the unpaired cysteine and thus prevent toxic NOTCH3 accumulation and the negative cascade of events leading to CADASIL. To accomplish this NOTCH3 cysteine correction by EGFr domain exclusion, we used pre-mRNA antisense-mediated skipping of specific NOTCH3 exons. Selection of these exons was achieved using in silico studies and based on the criterion that skipping of a particular exon or exon pair would modulate the protein in such a way that the mutant EGFr domain is eliminated, without otherwise corrupting NOTCH3 structure and function. Remarkably, we found that this strategy closely mimics evolutionary events, where the elimination and fusion of NOTCH EGFr domains led to the generation of four functional NOTCH homologues. We modelled a selection of exon skip strategies using cDNA constructs and show that the skip proteins retain normal protein processing, can bind ligand and be activated by ligand. We then determined the technical feasibility of targeted NOTCH3 exon skipping, by designing antisense oligonucleotides targeting exons 2-3, 4-5 and 6, which together harbour the majority of distinct CADASIL-causing mutations. Transfection of these antisense oligonucleotides into CADASIL patient-derived cerebral vascular smooth muscle cells resulted in successful exon skipping, without abrogating NOTCH3 signalling. Combined, these data provide proof of concept for this novel application of exon skipping, and are a first step towards the development of a rational therapeutic approach applicable to up to 94% of CADASIL-causing mutations.


Assuntos
CADASIL/genética , Cisteína/genética , Éxons/genética , Receptores Notch/genética , Sequência de Aminoácidos , CADASIL/diagnóstico , Cisteína/química , Terapia Genética/tendências , Células HEK293 , Humanos , Dados de Sequência Molecular , Músculo Liso Vascular/fisiologia , Técnicas de Cultura de Órgãos , Estrutura Secundária de Proteína , Receptor Notch3 , Receptores Notch/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA